{"title":"A mesh-free framework for high-order simulations of viscoelastic flows in complex geometries","authors":"J.R.C. King , S.J. Lind","doi":"10.1016/j.jnnfm.2024.105278","DOIUrl":null,"url":null,"abstract":"<div><p>The accurate and stable simulation of viscoelastic flows remains a significant computational challenge, exacerbated for flows in non-trivial and practical geometries. Here we present a new high-order meshless approach with variable resolution for the solution of viscoelastic flows across a range of Weissenberg numbers. Based on the Local Anisotropic Basis Function Method (LABFM) of King et al. (2020), highly accurate viscoelastic flow solutions are found using Oldroyd B and PPT models for a range of two dimensional problems — including Kolmogorov flow, planar Poiseulle flow, and flow in a representative porous media geometry. Convergence rates up to 9th order are shown. Three treatments for the conformation tensor evolution are investigated for use in this new high-order meshless context (direct integration, Cholesky decomposition, and log-conformation), with log-conformation providing consistently stable solutions across test cases, and direct integration yielding better accuracy for simpler unidirectional flows. The final test considers symmetry breaking in the porous media flow at moderate Weissenberg number, as a precursor to a future study of fully 3D high-fidelity simulations of elastic flow instabilities in complex geometries. The results herein demonstrate the potential of a viscoelastic flow solver that is both high-order (for accuracy) and meshless (for straightforward discretisation of non-trivial geometries including variable resolution). In the near-term, extension of this approach to three dimensional solutions promises to yield important insights into a range of viscoelastic flow problems, and especially the fundamental challenge of understanding elastic instabilities in practical settings.</p></div>","PeriodicalId":54782,"journal":{"name":"Journal of Non-Newtonian Fluid Mechanics","volume":"330 ","pages":"Article 105278"},"PeriodicalIF":2.7000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0377025724000946/pdfft?md5=0fe12ae733559952cd09ad60ef9e20a2&pid=1-s2.0-S0377025724000946-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Newtonian Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377025724000946","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
The accurate and stable simulation of viscoelastic flows remains a significant computational challenge, exacerbated for flows in non-trivial and practical geometries. Here we present a new high-order meshless approach with variable resolution for the solution of viscoelastic flows across a range of Weissenberg numbers. Based on the Local Anisotropic Basis Function Method (LABFM) of King et al. (2020), highly accurate viscoelastic flow solutions are found using Oldroyd B and PPT models for a range of two dimensional problems — including Kolmogorov flow, planar Poiseulle flow, and flow in a representative porous media geometry. Convergence rates up to 9th order are shown. Three treatments for the conformation tensor evolution are investigated for use in this new high-order meshless context (direct integration, Cholesky decomposition, and log-conformation), with log-conformation providing consistently stable solutions across test cases, and direct integration yielding better accuracy for simpler unidirectional flows. The final test considers symmetry breaking in the porous media flow at moderate Weissenberg number, as a precursor to a future study of fully 3D high-fidelity simulations of elastic flow instabilities in complex geometries. The results herein demonstrate the potential of a viscoelastic flow solver that is both high-order (for accuracy) and meshless (for straightforward discretisation of non-trivial geometries including variable resolution). In the near-term, extension of this approach to three dimensional solutions promises to yield important insights into a range of viscoelastic flow problems, and especially the fundamental challenge of understanding elastic instabilities in practical settings.
期刊介绍:
The Journal of Non-Newtonian Fluid Mechanics publishes research on flowing soft matter systems. Submissions in all areas of flowing complex fluids are welcomed, including polymer melts and solutions, suspensions, colloids, surfactant solutions, biological fluids, gels, liquid crystals and granular materials. Flow problems relevant to microfluidics, lab-on-a-chip, nanofluidics, biological flows, geophysical flows, industrial processes and other applications are of interest.
Subjects considered suitable for the journal include the following (not necessarily in order of importance):
Theoretical, computational and experimental studies of naturally or technologically relevant flow problems where the non-Newtonian nature of the fluid is important in determining the character of the flow. We seek in particular studies that lend mechanistic insight into flow behavior in complex fluids or highlight flow phenomena unique to complex fluids. Examples include
Instabilities, unsteady and turbulent or chaotic flow characteristics in non-Newtonian fluids,
Multiphase flows involving complex fluids,
Problems involving transport phenomena such as heat and mass transfer and mixing, to the extent that the non-Newtonian flow behavior is central to the transport phenomena,
Novel flow situations that suggest the need for further theoretical study,
Practical situations of flow that are in need of systematic theoretical and experimental research. Such issues and developments commonly arise, for example, in the polymer processing, petroleum, pharmaceutical, biomedical and consumer product industries.