An artificial neuronal network coupled with a genetic algorithm to optimise the production of unsaturated fatty acids in Parachlorella kessleri

IF 8.2 Q1 AGRICULTURE, MULTIDISCIPLINARY
Pablo Fernández Izquierdo , Leslie Cerón Delagado , Fedra Ortiz Benavides
{"title":"An artificial neuronal network coupled with a genetic algorithm to optimise the production of unsaturated fatty acids in Parachlorella kessleri","authors":"Pablo Fernández Izquierdo ,&nbsp;Leslie Cerón Delagado ,&nbsp;Fedra Ortiz Benavides","doi":"10.1016/j.aiia.2024.06.003","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, an Artificial Neural Network-Genetic Algorithm (ANN-GA) approach was successfully applied to optimise the physicochemical factors influencing the synthesis of unsaturated fatty acids (UFAs) in the microalgae <em>P. kessleri</em> UCM 001. The optimized model recommended specific cultivation conditions, including glucose at 29 g/L, NaNO<sub>3</sub> at 2.4 g/L, K<sub>2</sub>HPO<sub>4</sub> at 0.4 g/L, red LED light, an intensity of 1000 lx, and an 8:16-h light-dark cycle. Through ANN-GA optimisation, a remarkable 66.79% increase in UFAs production in <em>P. kessleri</em> UCM 001 was achieved, compared to previous studies. This underscores the potential of this technology for enhancing valuable lipid production. Sequential variations in the application of physicochemical factors during microalgae culture under mixotrophic conditions, as optimized by ANN-GA, induced alterations in UFAs production and composition in <em>P. kessleri</em> UCM 001. This suggests the feasibility of tailoring the lipid profile of microalgae to obtain specific lipids for diverse industrial applications. The microalgae were isolated from a high-mountain lake in Colombia, highlighting their adaptation to extreme conditions. This underscores their potential for sustainable lipid and biomaterial production. This study demonstrates the effectiveness of using ANN-GA technology to optimise UFAs production in microalgae, offering a promising avenue for obtaining valuable lipids. The microalgae's unique origin in a high-mountain environment in Colombia emphasises the importance of exploring and harnessing microbial resources in distinctive geographical regions for biotechnological applications.</p></div>","PeriodicalId":52814,"journal":{"name":"Artificial Intelligence in Agriculture","volume":"13 ","pages":"Pages 32-44"},"PeriodicalIF":8.2000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589721724000254/pdfft?md5=5e368428bd6813d6d581e52a6bbbc317&pid=1-s2.0-S2589721724000254-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Agriculture","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589721724000254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, an Artificial Neural Network-Genetic Algorithm (ANN-GA) approach was successfully applied to optimise the physicochemical factors influencing the synthesis of unsaturated fatty acids (UFAs) in the microalgae P. kessleri UCM 001. The optimized model recommended specific cultivation conditions, including glucose at 29 g/L, NaNO3 at 2.4 g/L, K2HPO4 at 0.4 g/L, red LED light, an intensity of 1000 lx, and an 8:16-h light-dark cycle. Through ANN-GA optimisation, a remarkable 66.79% increase in UFAs production in P. kessleri UCM 001 was achieved, compared to previous studies. This underscores the potential of this technology for enhancing valuable lipid production. Sequential variations in the application of physicochemical factors during microalgae culture under mixotrophic conditions, as optimized by ANN-GA, induced alterations in UFAs production and composition in P. kessleri UCM 001. This suggests the feasibility of tailoring the lipid profile of microalgae to obtain specific lipids for diverse industrial applications. The microalgae were isolated from a high-mountain lake in Colombia, highlighting their adaptation to extreme conditions. This underscores their potential for sustainable lipid and biomaterial production. This study demonstrates the effectiveness of using ANN-GA technology to optimise UFAs production in microalgae, offering a promising avenue for obtaining valuable lipids. The microalgae's unique origin in a high-mountain environment in Colombia emphasises the importance of exploring and harnessing microbial resources in distinctive geographical regions for biotechnological applications.

人工神经元网络与遗传算法相结合,优化克氏伞藻不饱和脂肪酸的生产
本研究采用人工神经网络-遗传算法(ANN-GA)成功地优化了影响微藻 P. kessleri UCM 001 中不饱和脂肪酸(UFAs)合成的理化因素。kessleri UCM 001 微藻中合成不饱和脂肪酸(UFAs)的理化因素。优化模型推荐了特定的培养条件,包括 29 克/升的葡萄糖、2.4 克/升的 NaNO3、0.4 克/升的 K2HPO4、1000 lx 的红色 LED 光和 8:16 小时的光暗循环。通过 ANN-GA 优化,与之前的研究相比,P. kessleri UCM 001 的 UFAs 产量显著提高了 66.79%。这凸显了该技术在提高有价值脂质产量方面的潜力。在混养条件下培养微藻期间,通过 ANN-GA 对理化因素的应用进行优化,在 P. kessleri UCM 001 中诱导改变了 UFAs 的产量和组成。这表明定制微藻脂质特征以获得特定脂质用于多种工业应用是可行的。这些微藻是从哥伦比亚的一个高山湖泊中分离出来的,突出表明了它们对极端条件的适应性。这凸显了它们在可持续脂质和生物材料生产方面的潜力。这项研究证明了使用 ANN-GA 技术优化微藻中的 UFAs 生产的有效性,为获得有价值的脂质提供了一条前景广阔的途径。微藻产自哥伦比亚高山环境的独特性强调了探索和利用独特地理区域的微生物资源进行生物技术应用的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Artificial Intelligence in Agriculture
Artificial Intelligence in Agriculture Engineering-Engineering (miscellaneous)
CiteScore
21.60
自引率
0.00%
发文量
18
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信