A note on Deligne's formula

Pub Date : 2024-06-18 DOI:10.1016/j.jpaa.2024.107754
Peter Schenzel
{"title":"A note on Deligne's formula","authors":"Peter Schenzel","doi":"10.1016/j.jpaa.2024.107754","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>R</em> denote a Noetherian ring and an ideal <span><math><mi>J</mi><mo>⊂</mo><mi>R</mi></math></span> with <span><math><mi>U</mi><mo>=</mo><mi>Spec</mi><mspace></mspace><mi>R</mi><mo>∖</mo><mi>V</mi><mo>(</mo><mi>J</mi><mo>)</mo></math></span>. For an <em>R</em>-module <em>M</em> there is an isomorphism <span><math><mi>Γ</mi><mo>(</mo><mi>U</mi><mo>,</mo><mover><mrow><mi>M</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo><mo>≅</mo><munder><mi>lim</mi><mo>→</mo></munder><msub><mrow><mi>Hom</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>(</mo><msup><mrow><mi>J</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><mi>M</mi><mo>)</mo></math></span> known as Deligne's formula (see <span>[8, p. 217]</span> and Deligne's Appendix in <span>[7]</span>). We extend the isomorphism for any <em>R</em>-module <em>M</em> in the non-Noetherian case of <em>R</em> and <span><math><mi>J</mi><mo>=</mo><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></math></span> a certain finitely generated ideal. Moreover, we recall a corresponding sheaf construction.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022404924001518/pdfft?md5=a8edd94b07a7a3b04be5dc0efdc259af&pid=1-s2.0-S0022404924001518-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924001518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let R denote a Noetherian ring and an ideal JR with U=SpecRV(J). For an R-module M there is an isomorphism Γ(U,M˜)limHomR(Jn,M) known as Deligne's formula (see [8, p. 217] and Deligne's Appendix in [7]). We extend the isomorphism for any R-module M in the non-Noetherian case of R and J=(x1,,xk) a certain finitely generated ideal. Moreover, we recall a corresponding sheaf construction.

分享
查看原文
关于德利涅公式的说明
让 R 表示诺特环和一个理想 J⊂R,U=SpecR∖V(J)。对于一个 R 模块 M,有一个同构Γ(U,M˜)≅lim→HomR(Jn,M),即德里涅公式(见 [8, p. 217] 和 [7] 中的德里涅附录)。我们在 R 和 J=(x1,...,xk) 某有限生成理想的非诺特情况下,对任意 R 模块 M 的同构进行扩展。此外,我们还回顾了相应的剪子构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信