Propagation reversal on trees in the large diffusion regime

IF 1.4 Q2 MATHEMATICS, APPLIED
Hermen Jan Hupkes , Mia Jukić
{"title":"Propagation reversal on trees in the large diffusion regime","authors":"Hermen Jan Hupkes ,&nbsp;Mia Jukić","doi":"10.1016/j.rinam.2024.100468","DOIUrl":null,"url":null,"abstract":"<div><p>In this work we study travelling wave solutions to bistable reaction–diffusion equations on bi-infinite <span><math><mi>k</mi></math></span>-ary trees in the continuum regime where the diffusion parameter is large. Adapting the spectral convergence method developed by Bates and his coworkers, we find an asymptotic prediction for the speed of travelling front solutions. In addition, we prove that the associated profiles converge to the solutions of a suitable limiting reaction–diffusion PDE. Finally, for the standard cubic nonlinearity we provide explicit formulas to bound the thin region in parameter space where the propagation direction undergoes a reversal.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"23 ","pages":"Article 100468"},"PeriodicalIF":1.4000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037424000384/pdfft?md5=0ccbfff14c645a3ae81342d2cc1abe7a&pid=1-s2.0-S2590037424000384-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this work we study travelling wave solutions to bistable reaction–diffusion equations on bi-infinite k-ary trees in the continuum regime where the diffusion parameter is large. Adapting the spectral convergence method developed by Bates and his coworkers, we find an asymptotic prediction for the speed of travelling front solutions. In addition, we prove that the associated profiles converge to the solutions of a suitable limiting reaction–diffusion PDE. Finally, for the standard cubic nonlinearity we provide explicit formulas to bound the thin region in parameter space where the propagation direction undergoes a reversal.

大扩散系统中树木上的传播逆转
在这项研究中,我们研究了在扩散参数很大的连续系统中,双稳态反应-扩散方程在双无限 k-ary 树上的行波解。通过采用贝茨及其同事开发的谱收敛方法,我们找到了游波前沿解速度的渐近预测。此外,我们还证明了相关剖面收敛于合适的极限反应-扩散 PDE 的解。最后,对于标准立方非线性,我们提供了明确的公式来约束参数空间中传播方向发生逆转的薄区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信