{"title":"Numerical model for electrogenic transport by the ATP-dependent potassium pump KdpFABC.","authors":"Adel Hussein, Xihui Zhang, David L Stokes","doi":"10.1016/j.bpr.2024.100169","DOIUrl":null,"url":null,"abstract":"<p><p>In vitro assays of ion transport are an essential tool for understanding molecular mechanisms associated with ATP-dependent pumps. Because ion transport is generally electrogenic, principles of electrophysiology are applicable, but conventional tools like patch-clamp are ineffective due to relatively low turnover rates of the pumps. Instead, assays have been developed to measure either voltage or current generated by transport activity of a population of molecules either in cell-derived membrane fragments or after reconstituting purified protein into proteoliposomes. In order to understand the nuances of these assays and to characterize effects of various operational parameters, we have developed a numerical model to simulate data produced by two relevant assays: fluorescence from voltage-sensitive dyes and current recorded by capacitive coupling on solid supported membranes. Parameters of the model, which has been implemented in Python, are described along with underlying principles of the computational algorithm. Experimental data from KdpFABC, a K<sup>+</sup> pump associated with P-type ATPases, are presented, and model parameters have been adjusted to mimic these data. In addition, effects of key parameters such as nonselective leak conductance and turnover rate are demonstrated. Finally, simulated data are used to illustrate the effects of capacitive coupling on measured current and to compare alternative methods for quantification of raw data.</p>","PeriodicalId":72402,"journal":{"name":"Biophysical reports","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11304011/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.bpr.2024.100169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
In vitro assays of ion transport are an essential tool for understanding molecular mechanisms associated with ATP-dependent pumps. Because ion transport is generally electrogenic, principles of electrophysiology are applicable, but conventional tools like patch-clamp are ineffective due to relatively low turnover rates of the pumps. Instead, assays have been developed to measure either voltage or current generated by transport activity of a population of molecules either in cell-derived membrane fragments or after reconstituting purified protein into proteoliposomes. In order to understand the nuances of these assays and to characterize effects of various operational parameters, we have developed a numerical model to simulate data produced by two relevant assays: fluorescence from voltage-sensitive dyes and current recorded by capacitive coupling on solid supported membranes. Parameters of the model, which has been implemented in Python, are described along with underlying principles of the computational algorithm. Experimental data from KdpFABC, a K+ pump associated with P-type ATPases, are presented, and model parameters have been adjusted to mimic these data. In addition, effects of key parameters such as nonselective leak conductance and turnover rate are demonstrated. Finally, simulated data are used to illustrate the effects of capacitive coupling on measured current and to compare alternative methods for quantification of raw data.
体外离子转运测定是了解与 ATP 依赖性泵相关的分子机制的重要工具。由于离子转运通常是电原性的,因此电生理学原理是适用的,但由于泵的周转率相对较低,像膜片钳这样的传统工具是无效的。取而代之的是,人们开发了一些检测方法,用于测量细胞膜片段中或将纯化蛋白质重组到蛋白脂质体中后,由分子群的转运活动产生的电压或电流。为了了解这些检测方法的细微差别并确定各种操作参数的影响,我们开发了一个数值模型来模拟两种相关检测方法产生的数据:电压敏感染料产生的荧光和固体支撑膜上电容耦合记录的电流。该模型是用 Python 实现的,其参数与计算算法的基本原理一并说明。介绍了与 P 型 ATP 酶相关的 K+ 泵 KdpFABC 的实验数据,并调整了模型参数以模拟这些数据。此外,还展示了非选择性泄漏电导和周转率等关键参数的影响。最后,模拟数据用于说明电容耦合对测量电流的影响,并比较量化原始数据的其他方法。