Optimal Structured Matrix Approximation for Robustness to Incomplete Biosequence Data.

IF 3.6 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Chris Salahub, Jeffrey Uhlmann
{"title":"Optimal Structured Matrix Approximation for Robustness to Incomplete Biosequence Data.","authors":"Chris Salahub, Jeffrey Uhlmann","doi":"10.1109/TCBB.2024.3420903","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a general method for optimally approximating an arbitrary matrix M by a structured matrix T (circulant, Toeplitz/Hankel, etc.) and examine its use for estimating the spectra of genomic linkage disequilibrium matrices. This application is prototypical of a variety of genomic and proteomic problems that demand robustness to incomplete biosequence information. We perform a simulation study and corroborative test of our method using real genomic data from the Mouse Genome Database [1]. The results confirm the predicted utility of the method and provide strong evidence of its potential value to a wide range of bioinformatics applications. Our optimal general matrix approximation method is expected to be of independent interest to an even broader range of applications in applied mathematics and engineering.</p>","PeriodicalId":13344,"journal":{"name":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TCBB.2024.3420903","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a general method for optimally approximating an arbitrary matrix M by a structured matrix T (circulant, Toeplitz/Hankel, etc.) and examine its use for estimating the spectra of genomic linkage disequilibrium matrices. This application is prototypical of a variety of genomic and proteomic problems that demand robustness to incomplete biosequence information. We perform a simulation study and corroborative test of our method using real genomic data from the Mouse Genome Database [1]. The results confirm the predicted utility of the method and provide strong evidence of its potential value to a wide range of bioinformatics applications. Our optimal general matrix approximation method is expected to be of independent interest to an even broader range of applications in applied mathematics and engineering.

针对不完整生物序列数据的最佳结构化矩阵近似。
我们提出了一种用结构矩阵 T(环状、Toeplitz/Hankel 等)优化近似任意矩阵 M 的通用方法,并研究了该方法在估计基因组连锁不平衡矩阵频谱中的应用。这一应用是各种基因组和蛋白质组问题的原型,这些问题要求对不完整的生物序列信息具有鲁棒性。我们使用小鼠基因组数据库 [1] 中的真实基因组数据对我们的方法进行了模拟研究和确证测试。结果证实了该方法的预期效用,并有力地证明了它在广泛的生物信息学应用中的潜在价值。我们的最优通用矩阵近似方法有望在应用数学和工程学的更广泛应用中产生独立的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.50
自引率
6.70%
发文量
479
审稿时长
3 months
期刊介绍: IEEE/ACM Transactions on Computational Biology and Bioinformatics emphasizes the algorithmic, mathematical, statistical and computational methods that are central in bioinformatics and computational biology; the development and testing of effective computer programs in bioinformatics; the development of biological databases; and important biological results that are obtained from the use of these methods, programs and databases; the emerging field of Systems Biology, where many forms of data are used to create a computer-based model of a complex biological system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信