Automated Segmentation of Lymph Nodes on Neck CT Scans Using Deep Learning.

Md Mahfuz Al Hasan, Saba Ghazimoghadam, Padcha Tunlayadechanont, Mohammed Tahsin Mostafiz, Manas Gupta, Antika Roy, Keith Peters, Bruno Hochhegger, Anthony Mancuso, Navid Asadizanjani, Reza Forghani
{"title":"Automated Segmentation of Lymph Nodes on Neck CT Scans Using Deep Learning.","authors":"Md Mahfuz Al Hasan, Saba Ghazimoghadam, Padcha Tunlayadechanont, Mohammed Tahsin Mostafiz, Manas Gupta, Antika Roy, Keith Peters, Bruno Hochhegger, Anthony Mancuso, Navid Asadizanjani, Reza Forghani","doi":"10.1007/s10278-024-01114-w","DOIUrl":null,"url":null,"abstract":"<p><p>Early and accurate detection of cervical lymph nodes is essential for the optimal management and staging of patients with head and neck malignancies. Pilot studies have demonstrated the potential for radiomic and artificial intelligence (AI) approaches in increasing diagnostic accuracy for the detection and classification of lymph nodes, but implementation of many of these approaches in real-world clinical settings would necessitate an automated lymph node segmentation pipeline as a first step. In this study, we aim to develop a non-invasive deep learning (DL) algorithm for detecting and automatically segmenting cervical lymph nodes in 25,119 CT slices from 221 normal neck contrast-enhanced CT scans from patients without head and neck cancer. We focused on the most challenging task of segmentation of small lymph nodes, evaluated multiple architectures, and employed U-Net and our adapted spatial context network to detect and segment small lymph nodes measuring 5-10 mm. The developed algorithm achieved a Dice score of 0.8084, indicating its effectiveness in detecting and segmenting cervical lymph nodes despite their small size. A segmentation framework successful in this task could represent an essential initial block for future algorithms aiming to evaluate small objects such as lymph nodes in different body parts, including small lymph nodes looking normal to the naked human eye but harboring early nodal metastases.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":"2955-2966"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11612088/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-024-01114-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/27 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Early and accurate detection of cervical lymph nodes is essential for the optimal management and staging of patients with head and neck malignancies. Pilot studies have demonstrated the potential for radiomic and artificial intelligence (AI) approaches in increasing diagnostic accuracy for the detection and classification of lymph nodes, but implementation of many of these approaches in real-world clinical settings would necessitate an automated lymph node segmentation pipeline as a first step. In this study, we aim to develop a non-invasive deep learning (DL) algorithm for detecting and automatically segmenting cervical lymph nodes in 25,119 CT slices from 221 normal neck contrast-enhanced CT scans from patients without head and neck cancer. We focused on the most challenging task of segmentation of small lymph nodes, evaluated multiple architectures, and employed U-Net and our adapted spatial context network to detect and segment small lymph nodes measuring 5-10 mm. The developed algorithm achieved a Dice score of 0.8084, indicating its effectiveness in detecting and segmenting cervical lymph nodes despite their small size. A segmentation framework successful in this task could represent an essential initial block for future algorithms aiming to evaluate small objects such as lymph nodes in different body parts, including small lymph nodes looking normal to the naked human eye but harboring early nodal metastases.

Abstract Image

利用深度学习自动分割颈部 CT 扫描的淋巴结
颈部淋巴结的早期准确检测对于头颈部恶性肿瘤患者的最佳管理和分期至关重要。试点研究已经证明了放射学和人工智能(AI)方法在提高淋巴结检测和分类诊断准确性方面的潜力,但要在真实世界的临床环境中实施这些方法,首先需要建立一个自动淋巴结分割管道。在本研究中,我们旨在开发一种非侵入式深度学习(DL)算法,用于检测和自动分割来自 221 例无头颈部癌症患者的正常颈部对比增强 CT 扫描的 25119 张 CT 切片中的颈部淋巴结。我们专注于最具挑战性的小淋巴结分割任务,评估了多种架构,并采用 U-Net 和我们经过调整的空间上下文网络来检测和分割 5-10 毫米的小淋巴结。所开发的算法获得了 0.8084 的 Dice 分数,表明其在检测和分割颈部淋巴结方面非常有效,尽管这些淋巴结很小。在这项任务中取得成功的分割框架,对于未来旨在评估身体不同部位淋巴结等小物体(包括肉眼正常但存在早期结节转移的小淋巴结)的算法来说,可能是一个重要的初始模块。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信