Yosef Bernardus Wirian, Yang Jiang, Sylvia Cerel-Suhl, Jeremiah Suhl, Qiang Cheng
{"title":"Exploring the Link Between Brain Waves and Sleep Patterns with Deep Learning Manifold Alignment.","authors":"Yosef Bernardus Wirian, Yang Jiang, Sylvia Cerel-Suhl, Jeremiah Suhl, Qiang Cheng","doi":"10.1007/978-3-031-42317-8_7","DOIUrl":null,"url":null,"abstract":"<p><p>Medical data are often multi-modal, which are collected from different sources with different formats, such as text, images, and audio. They have some intrinsic connections in meaning and semantics while manifesting disparate appearances. Polysomnography (PSG) datasets are multi-modal data that include hypnogram, electrocardiogram (ECG), and electroencephalogram (EEG). It is hard to measure the associations between different modalities. Previous studies have used PSG datasets to study the relationship between sleep disorders and quality and sleep architecture. We leveraged a new method of deep learning manifold alignment to explore the relationship between sleep architecture and EEG features. Our analysis results agreed with the results of previous studies that used PSG datasets to diagnose different sleep disorders and monitor sleep quality in different populations. The method could effectively find the associations between sleep architecture and EEG datasets, which are important for understanding the changes in sleep stages and brain activity. On the other hand, the Spearman correlation method, which is a common statistical technique, could not find the correlations between these datasets.</p>","PeriodicalId":94283,"journal":{"name":"The 4th Joint International Conference on Deep Learning, Big Data and Blockchain (DBB 2023). Joint International Conference on Deep Learning, Big Data and Blockchain (4th : 2023 : Marrakech, Morocco ; Online)","volume":"768 ","pages":"81-90"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11210370/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 4th Joint International Conference on Deep Learning, Big Data and Blockchain (DBB 2023). Joint International Conference on Deep Learning, Big Data and Blockchain (4th : 2023 : Marrakech, Morocco ; Online)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-42317-8_7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/31 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Medical data are often multi-modal, which are collected from different sources with different formats, such as text, images, and audio. They have some intrinsic connections in meaning and semantics while manifesting disparate appearances. Polysomnography (PSG) datasets are multi-modal data that include hypnogram, electrocardiogram (ECG), and electroencephalogram (EEG). It is hard to measure the associations between different modalities. Previous studies have used PSG datasets to study the relationship between sleep disorders and quality and sleep architecture. We leveraged a new method of deep learning manifold alignment to explore the relationship between sleep architecture and EEG features. Our analysis results agreed with the results of previous studies that used PSG datasets to diagnose different sleep disorders and monitor sleep quality in different populations. The method could effectively find the associations between sleep architecture and EEG datasets, which are important for understanding the changes in sleep stages and brain activity. On the other hand, the Spearman correlation method, which is a common statistical technique, could not find the correlations between these datasets.