A simple method improving acoustic mode identification capability based on genetic algorithms.

IF 1.2 Q3 ACOUSTICS
Huanxian Bu, Jun Han, Yuqi Xiao, Jie Zhou
{"title":"A simple method improving acoustic mode identification capability based on genetic algorithms.","authors":"Huanxian Bu, Jun Han, Yuqi Xiao, Jie Zhou","doi":"10.1121/10.0026465","DOIUrl":null,"url":null,"abstract":"<p><p>This letter develops a simple approach of duct mode identification and reconstruction based on genetic algorithms, which can extend the azimuthal mode order range compared to the conventional method based on the (spatial) discrete Fourier transform. The underlying principle is reconstructing the dominant mode from the modal identification forward model through optimization by exploiting the sparsity of the mode amplitude vector. The performance is experimentally demonstrated for detections of one and two azimuthal modes under noisy conditions with nondominant modes. Overall, the proposed genetic-algorithm-based framework for solving acoustic inverse problems is beneficial to duct acoustic testing, particularly design evaluations of fan blades and acoustic liners for aeroengines.</p>","PeriodicalId":73538,"journal":{"name":"JASA express letters","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JASA express letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1121/10.0026465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

This letter develops a simple approach of duct mode identification and reconstruction based on genetic algorithms, which can extend the azimuthal mode order range compared to the conventional method based on the (spatial) discrete Fourier transform. The underlying principle is reconstructing the dominant mode from the modal identification forward model through optimization by exploiting the sparsity of the mode amplitude vector. The performance is experimentally demonstrated for detections of one and two azimuthal modes under noisy conditions with nondominant modes. Overall, the proposed genetic-algorithm-based framework for solving acoustic inverse problems is beneficial to duct acoustic testing, particularly design evaluations of fan blades and acoustic liners for aeroengines.

基于遗传算法的提高声学模式识别能力的简单方法。
与传统的基于(空间)离散傅里叶变换的方法相比,本文提出了一种基于遗传算法的风道模式识别和重建的简单方法,它可以扩展方位角模式阶次范围。其基本原理是利用模态振幅矢量的稀疏性,通过优化从模态识别前向模型中重建主要模态。实验证明了在非主导模式的噪声条件下检测一个和两个方位角模式的性能。总之,所提出的基于遗传算法的声学逆问题求解框架有利于管道声学测试,特别是航空发动机风扇叶片和声衬垫的设计评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信