{"title":"Data-driven mathematical modeling of sleep consolidation in early childhood","authors":"","doi":"10.1016/j.jtbi.2024.111892","DOIUrl":null,"url":null,"abstract":"<div><p>Across early childhood development, sleep behavior transitions from a biphasic pattern (a daytime nap and nighttime sleep) to a monophasic pattern (only nighttime sleep). The transition to consolidated nighttime sleep, which occurs in most children between 2- and 5-years-old, is a major developmental milestone and reflects interactions between the developing homeostatic sleep drive and circadian system. Using a physiologically-based mathematical model of the sleep-wake regulatory network constrained by observational and experimental data from preschool-aged participants, we analyze how developmentally-mediated changes in the homeostatic sleep drive may contribute to the transition from napping to non-napping sleep patterns. We establish baseline behavior by identifying parameter sets that model typical 2-year-old napping behavior and 5-year-old non-napping behavior. Then we vary six model parameters associated with the dynamics of and sensitivity to the homeostatic sleep drive between the 2-year-old and 5-year-old parameter values to induce the transition from biphasic to monophasic sleep. We analyze the individual contributions of these parameters to sleep patterning by independently varying their age-dependent developmental trajectories. Parameters vary according to distinct evolution curves and produce bifurcation sequences representing various ages of transition onset, transition durations, and transitional sleep patterns. Finally, we consider the ability of napping and non-napping light schedules to reinforce napping or promote a transition to consolidated sleep, respectively. These modeling results provide insight into the role of the homeostatic sleep drive in promoting interindividual variability in developmentally-mediated transitions in sleep behavior and lay foundations for the identification of light- or behavior-based interventions that promote healthy sleep consolidation in early childhood.</p></div>","PeriodicalId":54763,"journal":{"name":"Journal of Theoretical Biology","volume":"593 ","pages":"Article 111892"},"PeriodicalIF":1.9000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022519324001760/pdfft?md5=7deec2791c33f05f7c1c56c9503f77f4&pid=1-s2.0-S0022519324001760-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022519324001760","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Across early childhood development, sleep behavior transitions from a biphasic pattern (a daytime nap and nighttime sleep) to a monophasic pattern (only nighttime sleep). The transition to consolidated nighttime sleep, which occurs in most children between 2- and 5-years-old, is a major developmental milestone and reflects interactions between the developing homeostatic sleep drive and circadian system. Using a physiologically-based mathematical model of the sleep-wake regulatory network constrained by observational and experimental data from preschool-aged participants, we analyze how developmentally-mediated changes in the homeostatic sleep drive may contribute to the transition from napping to non-napping sleep patterns. We establish baseline behavior by identifying parameter sets that model typical 2-year-old napping behavior and 5-year-old non-napping behavior. Then we vary six model parameters associated with the dynamics of and sensitivity to the homeostatic sleep drive between the 2-year-old and 5-year-old parameter values to induce the transition from biphasic to monophasic sleep. We analyze the individual contributions of these parameters to sleep patterning by independently varying their age-dependent developmental trajectories. Parameters vary according to distinct evolution curves and produce bifurcation sequences representing various ages of transition onset, transition durations, and transitional sleep patterns. Finally, we consider the ability of napping and non-napping light schedules to reinforce napping or promote a transition to consolidated sleep, respectively. These modeling results provide insight into the role of the homeostatic sleep drive in promoting interindividual variability in developmentally-mediated transitions in sleep behavior and lay foundations for the identification of light- or behavior-based interventions that promote healthy sleep consolidation in early childhood.
期刊介绍:
The Journal of Theoretical Biology is the leading forum for theoretical perspectives that give insight into biological processes. It covers a very wide range of topics and is of interest to biologists in many areas of research, including:
• Brain and Neuroscience
• Cancer Growth and Treatment
• Cell Biology
• Developmental Biology
• Ecology
• Evolution
• Immunology,
• Infectious and non-infectious Diseases,
• Mathematical, Computational, Biophysical and Statistical Modeling
• Microbiology, Molecular Biology, and Biochemistry
• Networks and Complex Systems
• Physiology
• Pharmacodynamics
• Animal Behavior and Game Theory
Acceptable papers are those that bear significant importance on the biology per se being presented, and not on the mathematical analysis. Papers that include some data or experimental material bearing on theory will be considered, including those that contain comparative study, statistical data analysis, mathematical proof, computer simulations, experiments, field observations, or even philosophical arguments, which are all methods to support or reject theoretical ideas. However, there should be a concerted effort to make papers intelligible to biologists in the chosen field.