An encoding framework for binarized images using hyperdimensional computing.

IF 2.4 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Frontiers in Big Data Pub Date : 2024-06-14 eCollection Date: 2024-01-01 DOI:10.3389/fdata.2024.1371518
Laura Smets, Werner Van Leekwijck, Ing Jyh Tsang, Steven Latré
{"title":"An encoding framework for binarized images using hyperdimensional computing.","authors":"Laura Smets, Werner Van Leekwijck, Ing Jyh Tsang, Steven Latré","doi":"10.3389/fdata.2024.1371518","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Hyperdimensional Computing (HDC) is a brain-inspired and lightweight machine learning method. It has received significant attention in the literature as a candidate to be applied in the wearable Internet of Things, near-sensor artificial intelligence applications, and on-device processing. HDC is computationally less complex than traditional deep learning algorithms and typically achieves moderate to good classification performance. A key aspect that determines the performance of HDC is encoding the input data to the hyperdimensional (HD) space.</p><p><strong>Methods: </strong>This article proposes a novel lightweight approach relying only on native HD arithmetic vector operations to encode binarized images that preserves the similarity of patterns at nearby locations by using point of interest selection and <i>local linear mapping</i>.</p><p><strong>Results: </strong>The method reaches an accuracy of 97.92% on the test set for the MNIST data set and 84.62% for the Fashion-MNIST data set.</p><p><strong>Discussion: </strong>These results outperform other studies using native HDC with different encoding approaches and are on par with more complex hybrid HDC models and lightweight binarized neural networks. The proposed encoding approach also demonstrates higher robustness to noise and blur compared to the baseline encoding.</p>","PeriodicalId":52859,"journal":{"name":"Frontiers in Big Data","volume":"7 ","pages":"1371518"},"PeriodicalIF":2.4000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11214273/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Big Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fdata.2024.1371518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Hyperdimensional Computing (HDC) is a brain-inspired and lightweight machine learning method. It has received significant attention in the literature as a candidate to be applied in the wearable Internet of Things, near-sensor artificial intelligence applications, and on-device processing. HDC is computationally less complex than traditional deep learning algorithms and typically achieves moderate to good classification performance. A key aspect that determines the performance of HDC is encoding the input data to the hyperdimensional (HD) space.

Methods: This article proposes a novel lightweight approach relying only on native HD arithmetic vector operations to encode binarized images that preserves the similarity of patterns at nearby locations by using point of interest selection and local linear mapping.

Results: The method reaches an accuracy of 97.92% on the test set for the MNIST data set and 84.62% for the Fashion-MNIST data set.

Discussion: These results outperform other studies using native HDC with different encoding approaches and are on par with more complex hybrid HDC models and lightweight binarized neural networks. The proposed encoding approach also demonstrates higher robustness to noise and blur compared to the baseline encoding.

使用超维计算的二值化图像编码框架。
简介超维计算(HDC)是一种受大脑启发的轻量级机器学习方法。作为一种可应用于可穿戴物联网、近传感人工智能应用和设备处理的候选方法,它在文献中受到了极大关注。与传统的深度学习算法相比,HDC 的计算复杂度较低,通常能实现中等到良好的分类性能。决定 HDC 性能的一个关键因素是将输入数据编码到超维(HD)空间:本文提出了一种新颖的轻量级方法,该方法仅依靠原生高清算术向量运算来编码二值化图像,通过兴趣点选择和局部线性映射来保留附近位置的模式相似性:该方法在 MNIST 数据集测试集上的准确率达到 97.92%,在时尚-MNIST 数据集上的准确率达到 84.62%:这些结果优于使用不同编码方法的本地 HDC 的其他研究,与更复杂的混合 HDC 模型和轻量级二值化神经网络相当。与基线编码相比,拟议的编码方法对噪声和模糊的鲁棒性也更强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.20
自引率
3.20%
发文量
122
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信