Akihiro Nishiyama , Shigenori Tanaka , Jack A. Tuszynski
{"title":"Quantum Brain Dynamics and Virtual Reality","authors":"Akihiro Nishiyama , Shigenori Tanaka , Jack A. Tuszynski","doi":"10.1016/j.biosystems.2024.105259","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we propose a control theory of manipulating holograms in Quantum Brain Dynamics (QBD) involving our subjective experiences, i.e. qualia. We begin with the Lagrangian density in QBD and extend our theory to a hierarchical model involving multiple layers covering the neocortex. We adopt reservoir computing approach or morphological computation to manipulate waveforms of holograms involving our subjective experiences. Numerical simulations performed indicate that the convergence to target waveforms of holograms is realized by external electric fields in QBD in a hierarchy. Our theory can be applied to non-invasive neuronal stimulation of the neocortex and adopted to check whether or not our brain adopts the language of holography. In case the protocol in a brain is discovered and the brain adopts the language of holography, our control theory will be applied to develop virtual reality devices by which our subjective experiences provided by the five senses in the form of qualia are manipulated non-invasively. Then, the information content of qualia might be directly transmitted into our brain without passing through sensory organs.</p></div>","PeriodicalId":50730,"journal":{"name":"Biosystems","volume":"242 ","pages":"Article 105259"},"PeriodicalIF":2.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosystems","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0303264724001448","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we propose a control theory of manipulating holograms in Quantum Brain Dynamics (QBD) involving our subjective experiences, i.e. qualia. We begin with the Lagrangian density in QBD and extend our theory to a hierarchical model involving multiple layers covering the neocortex. We adopt reservoir computing approach or morphological computation to manipulate waveforms of holograms involving our subjective experiences. Numerical simulations performed indicate that the convergence to target waveforms of holograms is realized by external electric fields in QBD in a hierarchy. Our theory can be applied to non-invasive neuronal stimulation of the neocortex and adopted to check whether or not our brain adopts the language of holography. In case the protocol in a brain is discovered and the brain adopts the language of holography, our control theory will be applied to develop virtual reality devices by which our subjective experiences provided by the five senses in the form of qualia are manipulated non-invasively. Then, the information content of qualia might be directly transmitted into our brain without passing through sensory organs.
期刊介绍:
BioSystems encourages experimental, computational, and theoretical articles that link biology, evolutionary thinking, and the information processing sciences. The link areas form a circle that encompasses the fundamental nature of biological information processing, computational modeling of complex biological systems, evolutionary models of computation, the application of biological principles to the design of novel computing systems, and the use of biomolecular materials to synthesize artificial systems that capture essential principles of natural biological information processing.