{"title":"Tetraploid interspecific hybrids between Asian and African rice species restore fertility depending on killer-protector loci for hybrid sterility.","authors":"Daichi Kuniyoshi, Megumi Ishihara, Koichi Yamamori, Yohei Koide, Yuji Kishima","doi":"10.1093/genetics/iyae104","DOIUrl":null,"url":null,"abstract":"<p><p>Interspecific F1 hybrids between Asian (Oryza sativa) and African rice (Oryza glaberrima) exhibit severe sterility caused by the accumulation of hybrid sterility genes/loci at 15 or more loci. The mechanisms underlying the hybrid sterility genes are largely unknown; however, a few genes associated with the killer-protector system, which is the system most frequently associated with hybrid sterility genes, have been identified. We previously produced fertile plants as tetraploids derived from diploid interspecific F1 hybrids through anther culture; therefore, it was suggested that hybrid sterility could be overcome following tetraploidization. We investigated whether tetraploid interspecific plants produced by crossing are fertile and tested the involvement of hybrid sterility genes in the process. Fertile tetraploid interspecific F1 hybrid plants were obtained by crossing 2 tetraploids of O. sativa and O. glaberrima. To elucidate the relationships between pollen fertility and the hybrid sterility loci in the tetraploid F1 microspores, we performed genetic analyses of the tetraploid F2 hybrids and diploid plants obtained from the microspores of tetraploid interspecific hybrids by anther culture. The result suggested that the tetraploid interspecific hybrids overcame pollen and seed infertility based on the proportion of loci with the killer-protector system present in the tetraploids. The heterozygous hybrid sterility loci with the killer-protector system in the tetraploid segregate the homozygous killed allele (16.7-21.4%), with more than three-quarters of the gametes surviving. We theoretically and experimentally demonstrated that fertile rice progenies can be grown from tetraploid interspecific hybrids.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyae104","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Interspecific F1 hybrids between Asian (Oryza sativa) and African rice (Oryza glaberrima) exhibit severe sterility caused by the accumulation of hybrid sterility genes/loci at 15 or more loci. The mechanisms underlying the hybrid sterility genes are largely unknown; however, a few genes associated with the killer-protector system, which is the system most frequently associated with hybrid sterility genes, have been identified. We previously produced fertile plants as tetraploids derived from diploid interspecific F1 hybrids through anther culture; therefore, it was suggested that hybrid sterility could be overcome following tetraploidization. We investigated whether tetraploid interspecific plants produced by crossing are fertile and tested the involvement of hybrid sterility genes in the process. Fertile tetraploid interspecific F1 hybrid plants were obtained by crossing 2 tetraploids of O. sativa and O. glaberrima. To elucidate the relationships between pollen fertility and the hybrid sterility loci in the tetraploid F1 microspores, we performed genetic analyses of the tetraploid F2 hybrids and diploid plants obtained from the microspores of tetraploid interspecific hybrids by anther culture. The result suggested that the tetraploid interspecific hybrids overcame pollen and seed infertility based on the proportion of loci with the killer-protector system present in the tetraploids. The heterozygous hybrid sterility loci with the killer-protector system in the tetraploid segregate the homozygous killed allele (16.7-21.4%), with more than three-quarters of the gametes surviving. We theoretically and experimentally demonstrated that fertile rice progenies can be grown from tetraploid interspecific hybrids.
期刊介绍:
GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work.
While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal.
The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists.
GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.