Harini Lakshman, Ammar Ahmed, Steven Coutteau, Dipak Shah
{"title":"Uncovering the Invisible: The Role of High-density Catheters in Recognizing Fractionated Signals in Pulmonary Vein Isolation.","authors":"Harini Lakshman, Ammar Ahmed, Steven Coutteau, Dipak Shah","doi":"10.19102/icrm.2024.15063","DOIUrl":null,"url":null,"abstract":"<p><p>The HD Grid multipolar mapping catheter has emerged as an invaluable tool for greater effectiveness of pulmonary vein isolation (PVI). In the cases described here, fractionated signals seen with the HD Grid catheter at the left atrial appendage (LAA) and left superior pulmonary vein (LSPV) junction were ablated. These signals are not likely to be visualized with conventional catheters and may cause recurrences due to incomplete PVI. The directional sensitivity limitations of bipolar electrogram recordings and the unique anatomy of the LAA-LSPV ridge further contribute to the challenge of evaluating PVI. The HD Grid catheter's ability to record bipoles parallel and perpendicular to the catheter splines and its high-density mapping capabilities provide a superior means for identifying gaps in ablation and detecting the low-voltage isthmus. Furthermore, factors such as ablation quality, catheter stability, and thickness of the LAA-LSPV ridge influence the presence of fractionated signals and the success of PVI. Incorporating preprocedural imaging modalities, such as computed tomography or magnetic resonance imaging, and real-time intracardiac echocardiography could enhance the tailored approach to address these challenges. Future developments in the HD Grid technology, including the option for contact force measurement during mapping, may offer additional insights into the nature of these signals. This case series highlights the significance of using the HD Grid catheter for a detailed interrogation of the LAA-LSPV ridge, ultimately leading to more effective PVI and improved outcomes in patients with atrial fibrillation.</p>","PeriodicalId":36299,"journal":{"name":"Journal of Innovations in Cardiac Rhythm Management","volume":"15 6","pages":"5889-5892"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11210676/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Innovations in Cardiac Rhythm Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19102/icrm.2024.15063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
The HD Grid multipolar mapping catheter has emerged as an invaluable tool for greater effectiveness of pulmonary vein isolation (PVI). In the cases described here, fractionated signals seen with the HD Grid catheter at the left atrial appendage (LAA) and left superior pulmonary vein (LSPV) junction were ablated. These signals are not likely to be visualized with conventional catheters and may cause recurrences due to incomplete PVI. The directional sensitivity limitations of bipolar electrogram recordings and the unique anatomy of the LAA-LSPV ridge further contribute to the challenge of evaluating PVI. The HD Grid catheter's ability to record bipoles parallel and perpendicular to the catheter splines and its high-density mapping capabilities provide a superior means for identifying gaps in ablation and detecting the low-voltage isthmus. Furthermore, factors such as ablation quality, catheter stability, and thickness of the LAA-LSPV ridge influence the presence of fractionated signals and the success of PVI. Incorporating preprocedural imaging modalities, such as computed tomography or magnetic resonance imaging, and real-time intracardiac echocardiography could enhance the tailored approach to address these challenges. Future developments in the HD Grid technology, including the option for contact force measurement during mapping, may offer additional insights into the nature of these signals. This case series highlights the significance of using the HD Grid catheter for a detailed interrogation of the LAA-LSPV ridge, ultimately leading to more effective PVI and improved outcomes in patients with atrial fibrillation.