Fluid-driven aseismic fault slip with permeability enhancement and dilatancy.

IF 4.3 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Eric M Dunham
{"title":"Fluid-driven aseismic fault slip with permeability enhancement and dilatancy.","authors":"Eric M Dunham","doi":"10.1098/rsta.2023.0255","DOIUrl":null,"url":null,"abstract":"<p><p>Injection-induced seismicity and aseismic slip often involve the reactivation of long-dormant faults, which may have extremely low permeability prior to slip. In contrast, most previous models of fluid-driven aseismic slip have assumed linear pressure diffusion in a fault zone of constant permeability and porosity. Slip occurs within a frictional shear crack whose edge can either lag or lead pressure diffusion, depending on the dimensionless stress-injection parameter that quantifies the prestress and injection conditions. Here, we extend this foundational work by accounting for permeability enhancement and dilatancy, assumed to occur instantaneously upon the onset of slip. The fault zone ahead of the crack is assumed to be impermeable, so fluid flow and pressure diffusion are confined to the interior, slipped part of the crack. The confinement of flow increases the pressurization rate and reduction of fault strength, facilitating crack growth even for severely understressed faults. Suctions from dilatancy slow crack growth, preventing propagation beyond the hydraulic diffusion length. Our new two-dimensional and three-dimensional solutions can facilitate the interpretation of induced seismicity data sets. They are especially relevant for faults in initially low permeability formations, such as shale layers serving as caprock seals for geologic carbon storage, or for hydraulic stimulation of geothermal reservoirs.This article is part of the theme issue 'Induced seismicity in coupled subsurface systems'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2023.0255","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Injection-induced seismicity and aseismic slip often involve the reactivation of long-dormant faults, which may have extremely low permeability prior to slip. In contrast, most previous models of fluid-driven aseismic slip have assumed linear pressure diffusion in a fault zone of constant permeability and porosity. Slip occurs within a frictional shear crack whose edge can either lag or lead pressure diffusion, depending on the dimensionless stress-injection parameter that quantifies the prestress and injection conditions. Here, we extend this foundational work by accounting for permeability enhancement and dilatancy, assumed to occur instantaneously upon the onset of slip. The fault zone ahead of the crack is assumed to be impermeable, so fluid flow and pressure diffusion are confined to the interior, slipped part of the crack. The confinement of flow increases the pressurization rate and reduction of fault strength, facilitating crack growth even for severely understressed faults. Suctions from dilatancy slow crack growth, preventing propagation beyond the hydraulic diffusion length. Our new two-dimensional and three-dimensional solutions can facilitate the interpretation of induced seismicity data sets. They are especially relevant for faults in initially low permeability formations, such as shale layers serving as caprock seals for geologic carbon storage, or for hydraulic stimulation of geothermal reservoirs.This article is part of the theme issue 'Induced seismicity in coupled subsurface systems'.

渗透性增强和扩张的流体驱动地震断层滑移。
注水引起的地震和无震滑动往往涉及长期休眠断层的重新激活,而这些断层在滑动之前的渗透率可能极低。与此相反,以前大多数流体驱动的地震滑动模型都假定在渗透率和孔隙率恒定的断层带中存在线性压力扩散。滑动发生在摩擦剪切裂缝中,裂缝边缘可以滞后或领先于压力扩散,这取决于量化预应力和注入条件的无量纲应力注入参数。在此,我们对这一基础性工作进行了扩展,考虑了渗透性增强和扩张,并假定在滑移开始时瞬间发生。裂缝前方的断层带假定是不可渗透的,因此流体流动和压力扩散被限制在裂缝内部的滑动部分。流体流动的限制增加了加压速度,降低了断层强度,即使是在应力严重不足的断层中,也有利于裂缝的扩展。扩张产生的吸力减缓了裂缝的扩展,防止裂缝扩展超过水力扩散长度。我们新的二维和三维解决方案有助于解释诱发地震数据集。它们尤其适用于初始渗透率较低地层中的断层,如作为地质碳封存的盖岩封层的页岩层,或地热储层的水力刺激。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.30
自引率
2.00%
发文量
367
审稿时长
3 months
期刊介绍: Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信