Alexa J Karkenny, Allyn Morris, Cameron Smith, Jorden Xavier, Zeynep Seref-Ferlengez, Leila Mehraban Alvandi, I Martin Levy
{"title":"Overwrapping Bivalved Casts: Does the Material Matter?","authors":"Alexa J Karkenny, Allyn Morris, Cameron Smith, Jorden Xavier, Zeynep Seref-Ferlengez, Leila Mehraban Alvandi, I Martin Levy","doi":"10.1097/BPO.0000000000002751","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Circumferential integrity of bivalved casts (cut twice longitudinally) can be restored by overwrapping with different materials. This study compared the mechanical properties of solid casts and bivalved casts overwrapped with semirigid fiberglass (SF), elastic bandages (EB), and rigid fiberglass (RF) using an overwrapped-bivalved cast-bone fracture (OBCBF) model.</p><p><strong>Methods: </strong>This study used an MTS Bionix Servohydraulic system to test properties of OBCBF models in 4 conditions: intact Control made of RF (not bivalved or overwrapped), a Rigid overwrapped model made of a Control bivalved and overwrapped with RF, a Semirigid overwrapped model made of a Control bivalved and overwrapped with SF, and an Elastic model made of a Control bivalved and overwrapped with EB. Constructs were tested in 4-point bending. Force-displacement curves (FDC) were generated to calculate load-at-critical-failure (LCF, angulation > 10 degrees = 6.6 mm vertical deformation) and stiffness.</p><p><strong>Results: </strong>Five controls and 30 OBCBF models with 3 overwrapped cast types were tested, with each overwrapped cast type tested with 2 orientations of the initial cast bivalve axis, yielding 7 conditions (Control, Rigid 0 degrees, Rigid 90 degrees, Semirigid 0 degrees, Semirigid 90 degrees, Elastic 0 degrees, Elastic 90 degrees). Mean LCF was: Rigid 90 degrees > Rigid 0 degrees > Control > Semirigid 0 degrees > Semirigid 90 degrees > Elastic 90 degrees > Elastic 0 degrees ( P <0.0001). Mean stiffness was: Rigid 0 degrees > Rigid 90 degrees > Control > Semirigid 90 degrees > Semirigid 0 degrees > Elastic 0 degrees > Elastic 90 degrees ( P <0.0001). Multiple comparisons indicated no significant difference between LCF and stiffness for Semirigid 0 degrees/90 degrees casts compared with Controls.</p><p><strong>Conclusions: </strong>Mechanical properties of overwrapped bivalved casts change depending on the materials used to overwrap, with higher LCF and stiffness when overwrapping with RF > SF > EB; however, mean comparisons indicate that rigid bivalved casts overwrapped with SF did not have significantly different mean stiffness and LCF from controls and other cast models.</p><p><strong>Clinical relevance: </strong>This study compares the bending properties of a bivalved cast-construct overwrapped with different materials, providing basic science evidence for orthopaedic surgeons who have several choices of materials to overwrap bivalved casts.</p>","PeriodicalId":16945,"journal":{"name":"Journal of Pediatric Orthopaedics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pediatric Orthopaedics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/BPO.0000000000002751","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Circumferential integrity of bivalved casts (cut twice longitudinally) can be restored by overwrapping with different materials. This study compared the mechanical properties of solid casts and bivalved casts overwrapped with semirigid fiberglass (SF), elastic bandages (EB), and rigid fiberglass (RF) using an overwrapped-bivalved cast-bone fracture (OBCBF) model.
Methods: This study used an MTS Bionix Servohydraulic system to test properties of OBCBF models in 4 conditions: intact Control made of RF (not bivalved or overwrapped), a Rigid overwrapped model made of a Control bivalved and overwrapped with RF, a Semirigid overwrapped model made of a Control bivalved and overwrapped with SF, and an Elastic model made of a Control bivalved and overwrapped with EB. Constructs were tested in 4-point bending. Force-displacement curves (FDC) were generated to calculate load-at-critical-failure (LCF, angulation > 10 degrees = 6.6 mm vertical deformation) and stiffness.
Results: Five controls and 30 OBCBF models with 3 overwrapped cast types were tested, with each overwrapped cast type tested with 2 orientations of the initial cast bivalve axis, yielding 7 conditions (Control, Rigid 0 degrees, Rigid 90 degrees, Semirigid 0 degrees, Semirigid 90 degrees, Elastic 0 degrees, Elastic 90 degrees). Mean LCF was: Rigid 90 degrees > Rigid 0 degrees > Control > Semirigid 0 degrees > Semirigid 90 degrees > Elastic 90 degrees > Elastic 0 degrees ( P <0.0001). Mean stiffness was: Rigid 0 degrees > Rigid 90 degrees > Control > Semirigid 90 degrees > Semirigid 0 degrees > Elastic 0 degrees > Elastic 90 degrees ( P <0.0001). Multiple comparisons indicated no significant difference between LCF and stiffness for Semirigid 0 degrees/90 degrees casts compared with Controls.
Conclusions: Mechanical properties of overwrapped bivalved casts change depending on the materials used to overwrap, with higher LCF and stiffness when overwrapping with RF > SF > EB; however, mean comparisons indicate that rigid bivalved casts overwrapped with SF did not have significantly different mean stiffness and LCF from controls and other cast models.
Clinical relevance: This study compares the bending properties of a bivalved cast-construct overwrapped with different materials, providing basic science evidence for orthopaedic surgeons who have several choices of materials to overwrap bivalved casts.
期刊介绍:
Journal of Pediatric Orthopaedics is a leading journal that focuses specifically on traumatic injuries to give you hands-on on coverage of a fast-growing field. You''ll get articles that cover everything from the nature of injury to the effects of new drug therapies; everything from recommendations for more effective surgical approaches to the latest laboratory findings.