{"title":"Proteomics-based host-specific biomarkers for tuberculosis: The future of TB diagnosis","authors":"Divya Pandey , Dipanjana Ghosh","doi":"10.1016/j.jprot.2024.105245","DOIUrl":null,"url":null,"abstract":"<div><p>Tuberculosis (TB) is an infectious disease that remains one of the major global public health concerns. Early detection of Active Pulmonary TB is therefore of utmost importance for controlling lethality and disease spreading. Currently available TB diagnostics can be broadly categorized into microscopy, culture-based, and molecular approaches, all of which come with compromised sensitivity, limited efficacy, and high expenses. Hence, rapid, sensitive, and affordable diagnostic methods for TB is the current prerequisite for disease management. This review summarizes the proteomics investigations for host-specific biomarkers from serum, sputum, saliva, and urine samples of TB patients, along with patients having comorbidity. Thorough data mining from available literature led us to conclude that the host-specific proteins involved in immunity and defense, metabolic regulation, cellular adhesion, and motility, inflammatory responses, and tissue remodelling have shown significant deregulation upon <em>Mycobacterium tuberculosis</em> (<em>Mtb</em>) infection. Notably, the immunoregulatory protein orosomucoid (ORM) was up-regulated in active TB compared to non-TB individuals, as observed in multiple studies from diverse sample types. Mannose receptor C type 2 (MRC2) was identified as an upregulated, treatment response biomarker in two independent serum proteomics investigations. Thorough mechanistic investigation on these candidate proteins would be fascinating to dig into potential drug targets and customized therapeutics for TB patients, along with their diagnostic potentials.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874391924001775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Tuberculosis (TB) is an infectious disease that remains one of the major global public health concerns. Early detection of Active Pulmonary TB is therefore of utmost importance for controlling lethality and disease spreading. Currently available TB diagnostics can be broadly categorized into microscopy, culture-based, and molecular approaches, all of which come with compromised sensitivity, limited efficacy, and high expenses. Hence, rapid, sensitive, and affordable diagnostic methods for TB is the current prerequisite for disease management. This review summarizes the proteomics investigations for host-specific biomarkers from serum, sputum, saliva, and urine samples of TB patients, along with patients having comorbidity. Thorough data mining from available literature led us to conclude that the host-specific proteins involved in immunity and defense, metabolic regulation, cellular adhesion, and motility, inflammatory responses, and tissue remodelling have shown significant deregulation upon Mycobacterium tuberculosis (Mtb) infection. Notably, the immunoregulatory protein orosomucoid (ORM) was up-regulated in active TB compared to non-TB individuals, as observed in multiple studies from diverse sample types. Mannose receptor C type 2 (MRC2) was identified as an upregulated, treatment response biomarker in two independent serum proteomics investigations. Thorough mechanistic investigation on these candidate proteins would be fascinating to dig into potential drug targets and customized therapeutics for TB patients, along with their diagnostic potentials.