Ruriko Yoshida, David Barnhill, Keiji Miura, Daniel Howe
{"title":"Tropical Density Estimation of Phylogenetic Trees.","authors":"Ruriko Yoshida, David Barnhill, Keiji Miura, Daniel Howe","doi":"10.1109/TCBB.2024.3420815","DOIUrl":null,"url":null,"abstract":"<p><p>Much evidence from biological theory and empirical data indicates that, gene trees, phylogenetic trees reconstructed from different genes (loci), do not have to have exactly the same tree topologies. Such incongruence between gene trees might be caused by some \"unusual\" evolutionary events, such as meiotic sexual recombination in eukaryotes or horizontal transfers of genetic material in prokaryotes. However, most of the gene trees are constrained by the tree topology of the underlying species tree, that is, the phylogenetic tree depicting the evolutionary history of the set of species under consideration. In order to discover \"outlying\" gene trees which do not follow the \"main distribution(s)\" of trees, we propose to apply the \"tropical metric\" with the max-plus algebra from tropical geometry to a non-parametric estimation of gene trees over the space of phylogenetic trees. In this research we apply the \"tropical metric,\" a well-defined metric over the space of phylogenetic trees under the max-plus algebra, to non-parametric estimation of gene trees distribution over the tree space. Kernel density estimator (KDE) is one of the most popular non-parametric estimation of a distribution from a given sample, and we propose an analogue of the classical KDE in the setting of tropical geometry with the tropical metric which measures the length of an intrinsic geodesic between trees over the tree space. We estimate the probability of an observed tree by empirical frequencies of nearby trees, with the level of influence determined by the tropical metric. Then, with simulated data generated from the multispecies coalescent model, we show that the non-parametric estimation of the gene tree distribution using the tropical metric performs better than one using the Billera-Holmes-Vogtmann (BHV) metric developed by Weyenberg et al. in terms of computational times and accuracy. We then apply it to Apicomplexa data.</p>","PeriodicalId":13344,"journal":{"name":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TCBB.2024.3420815","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Much evidence from biological theory and empirical data indicates that, gene trees, phylogenetic trees reconstructed from different genes (loci), do not have to have exactly the same tree topologies. Such incongruence between gene trees might be caused by some "unusual" evolutionary events, such as meiotic sexual recombination in eukaryotes or horizontal transfers of genetic material in prokaryotes. However, most of the gene trees are constrained by the tree topology of the underlying species tree, that is, the phylogenetic tree depicting the evolutionary history of the set of species under consideration. In order to discover "outlying" gene trees which do not follow the "main distribution(s)" of trees, we propose to apply the "tropical metric" with the max-plus algebra from tropical geometry to a non-parametric estimation of gene trees over the space of phylogenetic trees. In this research we apply the "tropical metric," a well-defined metric over the space of phylogenetic trees under the max-plus algebra, to non-parametric estimation of gene trees distribution over the tree space. Kernel density estimator (KDE) is one of the most popular non-parametric estimation of a distribution from a given sample, and we propose an analogue of the classical KDE in the setting of tropical geometry with the tropical metric which measures the length of an intrinsic geodesic between trees over the tree space. We estimate the probability of an observed tree by empirical frequencies of nearby trees, with the level of influence determined by the tropical metric. Then, with simulated data generated from the multispecies coalescent model, we show that the non-parametric estimation of the gene tree distribution using the tropical metric performs better than one using the Billera-Holmes-Vogtmann (BHV) metric developed by Weyenberg et al. in terms of computational times and accuracy. We then apply it to Apicomplexa data.
期刊介绍:
IEEE/ACM Transactions on Computational Biology and Bioinformatics emphasizes the algorithmic, mathematical, statistical and computational methods that are central in bioinformatics and computational biology; the development and testing of effective computer programs in bioinformatics; the development of biological databases; and important biological results that are obtained from the use of these methods, programs and databases; the emerging field of Systems Biology, where many forms of data are used to create a computer-based model of a complex biological system