Microstructural origins of enhanced work hardening and ductility in laser powder-bed fusion 3D-printed AlCoCrFeNi2.1 eutectic high-entropy alloys

IF 9.4 1区 材料科学 Q1 ENGINEERING, MECHANICAL
Yinuo Guo , Haijun Su , Hongliang Gao , Zhonglin Shen , Peixin Yang , Yuan Liu , Di Zhao , Zhuo Zhang , Min Guo , Xipeng Tan
{"title":"Microstructural origins of enhanced work hardening and ductility in laser powder-bed fusion 3D-printed AlCoCrFeNi2.1 eutectic high-entropy alloys","authors":"Yinuo Guo ,&nbsp;Haijun Su ,&nbsp;Hongliang Gao ,&nbsp;Zhonglin Shen ,&nbsp;Peixin Yang ,&nbsp;Yuan Liu ,&nbsp;Di Zhao ,&nbsp;Zhuo Zhang ,&nbsp;Min Guo ,&nbsp;Xipeng Tan","doi":"10.1016/j.ijplas.2024.104050","DOIUrl":null,"url":null,"abstract":"<div><p>Limited tensile ductility usually restricts the practical applications of new classes of high-strength materials in many industrial fields. Therefore, in-depth understanding of the work hardening behavior and its underlying plastic deformation mechanism are critical for the newly developed high-entropy alloys (HEAs). In this work, a geometric atomistic model of face-centered cubic (FCC)/ordered body-centered cubic (BCC (B2)) interfaces and the evolution of dislocation substructures have been investigated to explore the microstructural origins of work hardening responses for two additively manufactured AlCoCrFeNi<sub>2.1</sub> eutectic high-entropy alloys (EHEAs) with the respective lamellar and cellular microstructures. Unlike the lamellar interphase interfaces with the most classical Kurdjumov-Sachs (KS) FCC-BCC relationship of <span><math><mrow><msub><mrow><mo>{</mo><mn>111</mn><mo>}</mo></mrow><mtext>FCC</mtext></msub><mrow><mo>∥</mo><msub><mrow><mo>{</mo><mn>110</mn><mo>}</mo></mrow><mrow><mi>B</mi><mn>2</mn></mrow></msub><mspace></mspace><msub><mrow><mo>〈</mo><mrow><mn>011</mn><mo>〉</mo></mrow></mrow><mtext>FCC</mtext></msub><mo>∥</mo></mrow><msub><mrow><mo>〈</mo><mrow><mn>111</mn><mo>〉</mo></mrow></mrow><mrow><mi>B</mi><mn>2</mn></mrow></msub></mrow></math></span>, the Nishiyama-Wassermann (NW) relationship, namely <span><math><mrow><msub><mrow><mo>{</mo><mn>111</mn><mo>}</mo></mrow><mtext>FCC</mtext></msub><mrow><mo>∥</mo><msub><mrow><mo>{</mo><mn>110</mn><mo>}</mo></mrow><mrow><mi>B</mi><mn>2</mn></mrow></msub><mspace></mspace><mspace></mspace><msub><mrow><mo>〈</mo><mrow><mn>011</mn><mo>〉</mo></mrow></mrow><mtext>FCC</mtext></msub><mo>∥</mo></mrow><msub><mrow><mo>〈</mo><mrow><mn>001</mn><mo>〉</mo></mrow></mrow><mrow><mi>B</mi><mn>2</mn></mrow></msub></mrow></math></span>, is observed to be dominant on the cellular interphase interfaces. Furthermore, our intermittent high-resolution transmission electron microscopy (HR-TEM) results directly show that the deformation of lamellar AlCoCrFeNi<sub>2.1</sub> alloy first proceeds with massive stacking faults (SFs) and then dislocation walls developed across phases interfaces, due to the effective dislocation transfer capability of lamellar boundaries. The large uniform elongation of the cellular AlCoCrFeNi<sub>2.1</sub> alloy is attributed to the stable and progressive strain-hardening mechanism that is stemmed from the activated multiple slip systems, deformation-induced SF networks, and the associated Lomer-Cottrell locks in the middle and later stages of plastic deformation. Moreover, the nano-bridging of FCC cells in the 3D-printed microstructure provides unique channels for dislocation movement, which offsets the “blocking effect” of cellular boundaries and thus suppresses the pre-mature fracture.</p></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"179 ","pages":"Article 104050"},"PeriodicalIF":9.4000,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0749641924001773","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Limited tensile ductility usually restricts the practical applications of new classes of high-strength materials in many industrial fields. Therefore, in-depth understanding of the work hardening behavior and its underlying plastic deformation mechanism are critical for the newly developed high-entropy alloys (HEAs). In this work, a geometric atomistic model of face-centered cubic (FCC)/ordered body-centered cubic (BCC (B2)) interfaces and the evolution of dislocation substructures have been investigated to explore the microstructural origins of work hardening responses for two additively manufactured AlCoCrFeNi2.1 eutectic high-entropy alloys (EHEAs) with the respective lamellar and cellular microstructures. Unlike the lamellar interphase interfaces with the most classical Kurdjumov-Sachs (KS) FCC-BCC relationship of {111}FCC{110}B2011FCC111B2, the Nishiyama-Wassermann (NW) relationship, namely {111}FCC{110}B2011FCC001B2, is observed to be dominant on the cellular interphase interfaces. Furthermore, our intermittent high-resolution transmission electron microscopy (HR-TEM) results directly show that the deformation of lamellar AlCoCrFeNi2.1 alloy first proceeds with massive stacking faults (SFs) and then dislocation walls developed across phases interfaces, due to the effective dislocation transfer capability of lamellar boundaries. The large uniform elongation of the cellular AlCoCrFeNi2.1 alloy is attributed to the stable and progressive strain-hardening mechanism that is stemmed from the activated multiple slip systems, deformation-induced SF networks, and the associated Lomer-Cottrell locks in the middle and later stages of plastic deformation. Moreover, the nano-bridging of FCC cells in the 3D-printed microstructure provides unique channels for dislocation movement, which offsets the “blocking effect” of cellular boundaries and thus suppresses the pre-mature fracture.

激光粉末床熔融 3D 打印 AlCoCrFeNi2.1 共晶高熵合金加工硬化和延展性增强的微观结构起源
有限的拉伸延展性通常限制了新型高强度材料在许多工业领域的实际应用。因此,深入了解加工硬化行为及其背后的塑性变形机制对于新开发的高熵合金(HEAs)至关重要。在这项工作中,研究了面心立方(FCC)/有序体心立方(BCC (B2))界面的几何原子模型和位错亚结构的演变,以探索两种具有各自的片状和蜂窝状微结构的添加制造铝钴铬铁镍共晶高熵合金(EHEAs)的加工硬化响应的微结构起源。与层状相界面上最经典的 Kurdjumov-Sachs (KS) FCC-BCC 关系(Ⅳ)不同,在蜂窝状相界面上,Nishiyama-Wassermann (NW) 关系(即Ⅳ)占主导地位。此外,我们的间歇式高分辨率透射电子显微镜(HR-TEM)结果直接表明,由于层状边界具有有效的位错转移能力,层状铝钴铬铁镍合金的变形首先以大量堆积断层(SFs)进行,然后在相界面上形成位错壁。蜂窝状铝钴铬铁镍合金的大均匀伸长率归因于稳定和渐进的应变硬化机制,这种机制源于塑性变形中后期被激活的多重滑移系统、变形诱导的 SF 网络以及相关的 Lomer-Cottrell 锁。此外,三维打印微结构中 FCC 单元的纳米桥接为位错运动提供了独特的通道,抵消了单元边界的 "阻塞效应",从而抑制了过早断裂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Plasticity
International Journal of Plasticity 工程技术-材料科学:综合
CiteScore
15.30
自引率
26.50%
发文量
256
审稿时长
46 days
期刊介绍: International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena. Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信