{"title":"A variant on the CREST iMTD algorithm for noncovalent clusters of flexible molecules","authors":"Nathanael J. King, Ian D. LeBlanc, Alex Brown","doi":"10.1002/jcc.27458","DOIUrl":null,"url":null,"abstract":"<p>Conformational ensemble generation and the search for the global minimum conformation are important problems in computational chemistry. In this work, a variant on the conformer-rotamer ensemble sampling tool (CREST) iterative metadynamics (iMTD) algorithm designed for determining structural ensembles and energetics of noncovalent clusters of flexible molecules is presented. We term this new algorithm a low-energy diversity-enhanced variant on CREST, or LEDE-CREST. As with CREST, the energies are evaluated using the semiempirical GFN2-xTB extended tight binding approach. The utility of the algorithm is highlighted by generating ensembles for a variety of noncovalent clusters of flexible or rigid monomers using both CREST and LEDE-CREST.</p>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"45 29","pages":"2431-2445"},"PeriodicalIF":3.4000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcc.27458","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcc.27458","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Conformational ensemble generation and the search for the global minimum conformation are important problems in computational chemistry. In this work, a variant on the conformer-rotamer ensemble sampling tool (CREST) iterative metadynamics (iMTD) algorithm designed for determining structural ensembles and energetics of noncovalent clusters of flexible molecules is presented. We term this new algorithm a low-energy diversity-enhanced variant on CREST, or LEDE-CREST. As with CREST, the energies are evaluated using the semiempirical GFN2-xTB extended tight binding approach. The utility of the algorithm is highlighted by generating ensembles for a variety of noncovalent clusters of flexible or rigid monomers using both CREST and LEDE-CREST.
期刊介绍:
This distinguished journal publishes articles concerned with all aspects of computational chemistry: analytical, biological, inorganic, organic, physical, and materials. The Journal of Computational Chemistry presents original research, contemporary developments in theory and methodology, and state-of-the-art applications. Computational areas that are featured in the journal include ab initio and semiempirical quantum mechanics, density functional theory, molecular mechanics, molecular dynamics, statistical mechanics, cheminformatics, biomolecular structure prediction, molecular design, and bioinformatics.