Classification of Symmetry-Enriched Topological Quantum Spin Liquids

IF 11.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Weicheng Ye, Liujun Zou
{"title":"Classification of Symmetry-Enriched Topological Quantum Spin Liquids","authors":"Weicheng Ye, Liujun Zou","doi":"10.1103/physrevx.14.021053","DOIUrl":null,"url":null,"abstract":"We present a systematic framework to classify symmetry-enriched topological quantum spin liquids in two spatial dimensions. This framework can deal with all topological quantum spin liquids, which may be either Abelian or non-Abelian and chiral or nonchiral. It can systematically treat a general symmetry, which may include both lattice symmetry and internal symmetry, may contain antiunitary symmetry, and may permute anyons. The framework applies to all types of lattices and can systematically distinguish different lattice systems with the same symmetry group using their quantum anomalies, which are sometimes known as Lieb-Schultz-Mattis anomalies. We apply this framework to classify <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">U</mi><mo stretchy=\"false\">(</mo><mn>1</mn><msub><mo stretchy=\"false\">)</mo><mrow><mn>2</mn><mi>N</mi></mrow></msub></math> chiral states and non-Abelian <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msup><mrow><mi>Ising</mi></mrow><mrow><mo stretchy=\"false\">(</mo><mi>ν</mi><mo stretchy=\"false\">)</mo></mrow></msup></mrow></math> states enriched by a <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi><mn>6</mn><mo>×</mo><mrow><mi>SO</mi></mrow><mo stretchy=\"false\">(</mo><mn>3</mn><mo stretchy=\"false\">)</mo></math> or <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi><mn>4</mn><mo>×</mo><mrow><mi>SO</mi></mrow><mo stretchy=\"false\">(</mo><mn>3</mn><mo stretchy=\"false\">)</mo></math> symmetry and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi mathvariant=\"double-struck\">Z</mi><mi>N</mi></msub></math> topological orders and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">U</mi><mo stretchy=\"false\">(</mo><mn>1</mn><msub><mo stretchy=\"false\">)</mo><mrow><mn>2</mn><mi>N</mi></mrow></msub><mo>×</mo><mi mathvariant=\"normal\">U</mi><mo stretchy=\"false\">(</mo><mn>1</mn><msub><mo stretchy=\"false\">)</mo><mrow><mo>−</mo><mn>2</mn><mi>N</mi></mrow></msub></math> topological orders enriched by a <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi><mn>6</mn><mi>m</mi><mo>×</mo><mrow><mi>SO</mi></mrow><mo stretchy=\"false\">(</mo><mn>3</mn><mo stretchy=\"false\">)</mo><mo>×</mo><msubsup><mi mathvariant=\"double-struck\">Z</mi><mn>2</mn><mi>T</mi></msubsup></math>, <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi><mn>4</mn><mi>m</mi><mo>×</mo><mrow><mi>SO</mi></mrow><mo stretchy=\"false\">(</mo><mn>3</mn><mo stretchy=\"false\">)</mo><mo>×</mo><msubsup><mi mathvariant=\"double-struck\">Z</mi><mn>2</mn><mi>T</mi></msubsup></math>, <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi><mn>6</mn><mi>m</mi><mo>×</mo><msubsup><mi mathvariant=\"double-struck\">Z</mi><mn>2</mn><mi>T</mi></msubsup></math>, or <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi><mn>4</mn><mi>m</mi><mo>×</mo><msubsup><mi mathvariant=\"double-struck\">Z</mi><mn>2</mn><mi>T</mi></msubsup></math> symmetry, where <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi><mn>6</mn></math>, <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi><mn>4</mn></math>, <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi><mn>6</mn><mi>m</mi></math>, and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi><mn>4</mn><mi>m</mi></math> are lattice symmetries while SO(3) and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mi mathvariant=\"double-struck\">Z</mi><mn>2</mn><mi>T</mi></msubsup></math> are spin rotation and time-reversal symmetries, respectively. In particular, we identify symmetry-enriched topological quantum spin liquids that are not easily captured by the usual parton-mean-field approach, including examples with the familiar <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi mathvariant=\"double-struck\">Z</mi><mn>2</mn></msub></math> topological order.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":null,"pages":null},"PeriodicalIF":11.6000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.14.021053","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We present a systematic framework to classify symmetry-enriched topological quantum spin liquids in two spatial dimensions. This framework can deal with all topological quantum spin liquids, which may be either Abelian or non-Abelian and chiral or nonchiral. It can systematically treat a general symmetry, which may include both lattice symmetry and internal symmetry, may contain antiunitary symmetry, and may permute anyons. The framework applies to all types of lattices and can systematically distinguish different lattice systems with the same symmetry group using their quantum anomalies, which are sometimes known as Lieb-Schultz-Mattis anomalies. We apply this framework to classify U(1)2N chiral states and non-Abelian Ising(ν) states enriched by a p6×SO(3) or p4×SO(3) symmetry and ZN topological orders and U(1)2N×U(1)2N topological orders enriched by a p6m×SO(3)×Z2T, p4m×SO(3)×Z2T, p6m×Z2T, or p4m×Z2T symmetry, where p6, p4, p6m, and p4m are lattice symmetries while SO(3) and Z2T are spin rotation and time-reversal symmetries, respectively. In particular, we identify symmetry-enriched topological quantum spin liquids that are not easily captured by the usual parton-mean-field approach, including examples with the familiar Z2 topological order.

Abstract Image

对称性丰富的拓扑量子自旋液体的分类
我们提出了一个系统框架,用于在两个空间维度上对对称性丰富的拓扑量子自旋液体进行分类。这个框架可以处理所有拓扑量子自旋液体,它们可以是阿贝尔的或非阿贝尔的,也可以是手性的或非手性的。它可以系统地处理一般对称性,其中可能包括晶格对称性和内部对称性,可能包含反单元对称性,也可能包覆任意子。该框架适用于所有类型的晶格,并能利用其量子反常现象(有时也称为利布-舒尔茨-马蒂斯反常现象)系统地区分具有相同对称群的不同晶格系统。我们运用这一框架来划分由 p6×SO(3) 或 p4×SO(3) 对称和 ZN 拓扑阶以及由 p6m×SO(3)×Z2T 丰富的 U(1)2N 手性态和非阿贝尔伊辛(ν)态、p4m×SO(3)×Z2T、p6m×Z2T 或 p4m×Z2T 对称,其中 p6、p4、p6m 和 p4m 是晶格对称,而 SO(3) 和 Z2T 分别是自旋旋转对称和时间反转对称。特别是,我们发现了对称性丰富的拓扑量子自旋液体,这些液体不容易被通常的粒子均场方法所捕获,包括具有我们熟悉的 Z2 拓扑阶的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review X
Physical Review X PHYSICS, MULTIDISCIPLINARY-
CiteScore
24.60
自引率
1.60%
发文量
197
审稿时长
3 months
期刊介绍: Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信