{"title":"Volumetric imaging of the tumor microvasculature reflects outcomes and genomic states of clear cell renal cell carcinoma","authors":"Yuta Kaneko, Tsukasa Masuda, Kimiharu Takamatsu, Shuji Mikami, Kohei Nakamura, Hiroshi Nishihara, Ryuichi Mizuno, Nobuyuki Tanaka, Mototsugu Oya","doi":"10.1002/2056-4538.12388","DOIUrl":null,"url":null,"abstract":"<p>Tumor structure is heterogeneous and complex, and it is difficult to obtain complete characteristics by two-dimensional analysis. The aim of this study was to visualize and characterize volumetric vascular information of clear cell renal cell carcinoma (ccRCC) tumors using whole tissue phenotyping and three-dimensional light-sheet microscopy. Here, we used the diagnosing immunolabeled paraffin-embedded cleared organs pipeline for tissue clearing, immunolabeling, and three-dimensional imaging. The spatial distributions of CD34, which targets blood vessels, and LYVE-1, which targets lymphatic vessels, were examined by calculating three-dimensional density, vessel length, vessel radius, and density curves, such as skewness, kurtosis, and variance of the expression. We then examined those associations with ccRCC outcomes and genetic alteration state. Formalin-fixed paraffin-embedded tumor samples from 46 ccRCC patients were included in the study. Receiver operating characteristic curve analyses revealed the associations between blood vessel and lymphatic vessel distributions and pathological factors such as a high nuclear grade, large tumor size, and the presence of venous invasion. Furthermore, three-dimensional imaging parameters stratified ccRCC patients regarding survival outcomes. An analysis of genomic alterations based on volumetric vascular information parameters revealed that PI3K-mTOR pathway mutations related to the blood vessel radius were significantly different. Collectively, we have shown that the spatial elucidation of volumetric vasculature information could be prognostic and may serve as a new biomarker for genomic alterations. High-end tissue clearing techniques and volumetric immunohistochemistry enable three-dimensional analysis of tumors, leading to a better understanding of the microvascular structure in the tumor space.</p>","PeriodicalId":48612,"journal":{"name":"Journal of Pathology Clinical Research","volume":"10 4","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11200083/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pathology Clinical Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/2056-4538.12388","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Tumor structure is heterogeneous and complex, and it is difficult to obtain complete characteristics by two-dimensional analysis. The aim of this study was to visualize and characterize volumetric vascular information of clear cell renal cell carcinoma (ccRCC) tumors using whole tissue phenotyping and three-dimensional light-sheet microscopy. Here, we used the diagnosing immunolabeled paraffin-embedded cleared organs pipeline for tissue clearing, immunolabeling, and three-dimensional imaging. The spatial distributions of CD34, which targets blood vessels, and LYVE-1, which targets lymphatic vessels, were examined by calculating three-dimensional density, vessel length, vessel radius, and density curves, such as skewness, kurtosis, and variance of the expression. We then examined those associations with ccRCC outcomes and genetic alteration state. Formalin-fixed paraffin-embedded tumor samples from 46 ccRCC patients were included in the study. Receiver operating characteristic curve analyses revealed the associations between blood vessel and lymphatic vessel distributions and pathological factors such as a high nuclear grade, large tumor size, and the presence of venous invasion. Furthermore, three-dimensional imaging parameters stratified ccRCC patients regarding survival outcomes. An analysis of genomic alterations based on volumetric vascular information parameters revealed that PI3K-mTOR pathway mutations related to the blood vessel radius were significantly different. Collectively, we have shown that the spatial elucidation of volumetric vasculature information could be prognostic and may serve as a new biomarker for genomic alterations. High-end tissue clearing techniques and volumetric immunohistochemistry enable three-dimensional analysis of tumors, leading to a better understanding of the microvascular structure in the tumor space.
期刊介绍:
The Journal of Pathology: Clinical Research and The Journal of Pathology serve as translational bridges between basic biomedical science and clinical medicine with particular emphasis on, but not restricted to, tissue based studies.
The focus of The Journal of Pathology: Clinical Research is the publication of studies that illuminate the clinical relevance of research in the broad area of the study of disease. Appropriately powered and validated studies with novel diagnostic, prognostic and predictive significance, and biomarker discover and validation, will be welcomed. Studies with a predominantly mechanistic basis will be more appropriate for the companion Journal of Pathology.