[Ischemic stroke infarct segmentation model based on depthwise separable convolution for multimodal magnetic resonance imaging].

Q4 Medicine
Yidong Jin, Mengfei Wang, Jingjing Chen, Yuehua Li
{"title":"[Ischemic stroke infarct segmentation model based on depthwise separable convolution for multimodal magnetic resonance imaging].","authors":"Yidong Jin, Mengfei Wang, Jingjing Chen, Yuehua Li","doi":"10.7507/1001-5515.202308001","DOIUrl":null,"url":null,"abstract":"<p><p>Magnetic resonance imaging (MRI) plays a crucial role in the diagnosis of ischemic stroke. Accurate segmentation of the infarct is of great significance for selecting intervention treatment methods and evaluating the prognosis of patients. To address the issue of poor segmentation accuracy of existing methods for multiscale stroke lesions, a novel encoder-decoder architecture network based on depthwise separable convolution is proposed. Firstly, this network replaces the convolutional layer modules of the U-Net with redesigned depthwise separable convolution modules. Secondly, an modified Atrous spatial pyramid pooling (MASPP) is introduced to enlarge the receptive field and enhance the extraction of multiscale features. Thirdly, an attention gate (AG) structure is incorporated at the skip connections of the network to further enhance the segmentation accuracy of multiscale targets. Finally, Experimental evaluations are conducted using the ischemic stroke lesion segmentation 2022 challenge (ISLES2022) dataset. The proposed algorithm in this paper achieves Dice similarity coefficient (DSC), Hausdorff distance (HD), sensitivity (SEN), and precision (PRE) scores of 0.816 5, 3.668 1, 0.889 2, and 0.894 6, respectively, outperforming other mainstream segmentation algorithms. The experimental results demonstrate that the method in this paper effectively improves the segmentation of infarct lesions, and is expected to provide a reliable support for clinical diagnosis and treatment.</p>","PeriodicalId":39324,"journal":{"name":"生物医学工程学杂志","volume":"41 3","pages":"535-543"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11208642/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物医学工程学杂志","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.7507/1001-5515.202308001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetic resonance imaging (MRI) plays a crucial role in the diagnosis of ischemic stroke. Accurate segmentation of the infarct is of great significance for selecting intervention treatment methods and evaluating the prognosis of patients. To address the issue of poor segmentation accuracy of existing methods for multiscale stroke lesions, a novel encoder-decoder architecture network based on depthwise separable convolution is proposed. Firstly, this network replaces the convolutional layer modules of the U-Net with redesigned depthwise separable convolution modules. Secondly, an modified Atrous spatial pyramid pooling (MASPP) is introduced to enlarge the receptive field and enhance the extraction of multiscale features. Thirdly, an attention gate (AG) structure is incorporated at the skip connections of the network to further enhance the segmentation accuracy of multiscale targets. Finally, Experimental evaluations are conducted using the ischemic stroke lesion segmentation 2022 challenge (ISLES2022) dataset. The proposed algorithm in this paper achieves Dice similarity coefficient (DSC), Hausdorff distance (HD), sensitivity (SEN), and precision (PRE) scores of 0.816 5, 3.668 1, 0.889 2, and 0.894 6, respectively, outperforming other mainstream segmentation algorithms. The experimental results demonstrate that the method in this paper effectively improves the segmentation of infarct lesions, and is expected to provide a reliable support for clinical diagnosis and treatment.

[基于多模态磁共振成像深度可分离卷积的缺血性中风梗塞分割模型]。
磁共振成像(MRI)在缺血性脑卒中的诊断中起着至关重要的作用。准确分割梗死区对选择干预治疗方法和评估患者预后具有重要意义。针对现有方法对多尺度脑卒中病灶分割准确性差的问题,提出了一种基于深度可分离卷积的新型编码器-解码器架构网络。首先,该网络用重新设计的深度可分离卷积模块取代了 U-Net 的卷积层模块。其次,引入了改进的阿特鲁斯空间金字塔池化(MASPP)技术,以扩大感受野,增强多尺度特征的提取。第三,在网络的跳转连接处加入注意门(AG)结构,进一步提高多尺度目标的分割精度。最后,利用缺血性中风病灶分割 2022 挑战赛(ISLES2022)数据集进行了实验评估。本文提出的算法在 Dice 相似系数(DSC)、Hausdorff 距离(HD)、灵敏度(SEN)和精度(PRE)方面的得分分别为 0.816 5、3.668 1、0.889 2 和 0.894 6,优于其他主流分割算法。实验结果表明,本文方法有效提高了梗死病灶的分割效果,有望为临床诊断和治疗提供可靠的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
生物医学工程学杂志
生物医学工程学杂志 Medicine-Medicine (all)
CiteScore
0.80
自引率
0.00%
发文量
4868
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信