{"title":"T3 + 3: 3 + 3 Design With Delayed Outcomes.","authors":"Jiaying Guo, Mengyi Lu, Isabella Wan, Yumin Wang, Leng Han, Yong Zang","doi":"10.1002/pst.2414","DOIUrl":null,"url":null,"abstract":"<p><p>Delayed outcome is common in phase I oncology clinical trials. It causes logistic difficulty, wastes resources, and prolongs the trial duration. This article investigates this issue and proposes the time-to-event 3 + 3 (T3 + 3) design, which utilizes the actual follow-up time for at-risk patients with pending toxicity outcomes. The T3 + 3 design allows continuous accrual without unnecessary trial suspension and is costless and implementable with pretabulated dose decision rules. Besides, the T3 + 3 design uses the isotonic regression to estimate the toxicity rates across dose levels and therefore can accommodate for any targeted toxicity rate for maximum tolerated dose (MTD). It dramatically facilitates the trial preparation and conduct without intensive computation and statistical consultation. The extension to other algorithm-based phase I dose-finding designs (e.g., i3 + 3 design) is also studied. Comprehensive computer simulation studies are conducted to investigate the performance of the T3 + 3 design under various dose-toxicity scenarios. The results confirm that the T3 + 3 design substantially shortens the trial duration compared with the conventional 3 + 3 design and yields much higher accuracy in MTD identification than the rolling six design. In summary, the T3 + 3 design addresses the delayed outcome issue while keeping the desirable features of the 3 + 3 design, such as simplicity, transparency, and costless implementation. It has great potential to accelerate early-phase drug development.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/pst.2414","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Delayed outcome is common in phase I oncology clinical trials. It causes logistic difficulty, wastes resources, and prolongs the trial duration. This article investigates this issue and proposes the time-to-event 3 + 3 (T3 + 3) design, which utilizes the actual follow-up time for at-risk patients with pending toxicity outcomes. The T3 + 3 design allows continuous accrual without unnecessary trial suspension and is costless and implementable with pretabulated dose decision rules. Besides, the T3 + 3 design uses the isotonic regression to estimate the toxicity rates across dose levels and therefore can accommodate for any targeted toxicity rate for maximum tolerated dose (MTD). It dramatically facilitates the trial preparation and conduct without intensive computation and statistical consultation. The extension to other algorithm-based phase I dose-finding designs (e.g., i3 + 3 design) is also studied. Comprehensive computer simulation studies are conducted to investigate the performance of the T3 + 3 design under various dose-toxicity scenarios. The results confirm that the T3 + 3 design substantially shortens the trial duration compared with the conventional 3 + 3 design and yields much higher accuracy in MTD identification than the rolling six design. In summary, the T3 + 3 design addresses the delayed outcome issue while keeping the desirable features of the 3 + 3 design, such as simplicity, transparency, and costless implementation. It has great potential to accelerate early-phase drug development.
期刊介绍:
Pharmaceutical Statistics is an industry-led initiative, tackling real problems in statistical applications. The Journal publishes papers that share experiences in the practical application of statistics within the pharmaceutical industry. It covers all aspects of pharmaceutical statistical applications from discovery, through pre-clinical development, clinical development, post-marketing surveillance, consumer health, production, epidemiology, and health economics.
The Journal is both international and multidisciplinary. It includes high quality practical papers, case studies and review papers.