Estimating Enzyme Expression and Metabolic Pathway Activity in Borreliella-Infected and Uninfected Mice.

IF 1.4 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS
Filipp Martin Rondel, Hafsa Farooq, Roya Hosseini, Akshay Juyal, Sergey Knyazev, Serghei Mangul, Artem S Rogovskyy, Alexander Zelikovsky
{"title":"Estimating Enzyme Expression and Metabolic Pathway Activity in <i>Borreliella</i>-Infected and Uninfected Mice.","authors":"Filipp Martin Rondel, Hafsa Farooq, Roya Hosseini, Akshay Juyal, Sergey Knyazev, Serghei Mangul, Artem S Rogovskyy, Alexander Zelikovsky","doi":"10.1089/cmb.2024.0564","DOIUrl":null,"url":null,"abstract":"<p><p>Evaluating changes in metabolic pathway activity is essential for studying disease mechanisms and developing new treatments, with significant benefits extending to human health. Here, we propose EMPathways2, a maximum likelihood pipeline that is based on the expectation-maximization algorithm, which is capable of evaluating enzyme expression and metabolic pathway activity level. We first estimate enzyme expression from RNA-seq data that is used for simultaneous estimation of pathway activity levels using enzyme participation levels in each pathway. We implement the novel pipeline to RNA-seq data from several groups of mice, which provides a deeper look at the biochemical changes occurring as a result of bacterial infection, disease, and immune response. Our results show that estimated enzyme expression, pathway activity levels, and enzyme participation levels in each pathway are robust and stable across all samples. Estimated activity levels of a significant number of metabolic pathways strongly correlate with the infected and uninfected status of the respective rodent types.</p>","PeriodicalId":15526,"journal":{"name":"Journal of Computational Biology","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/cmb.2024.0564","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Evaluating changes in metabolic pathway activity is essential for studying disease mechanisms and developing new treatments, with significant benefits extending to human health. Here, we propose EMPathways2, a maximum likelihood pipeline that is based on the expectation-maximization algorithm, which is capable of evaluating enzyme expression and metabolic pathway activity level. We first estimate enzyme expression from RNA-seq data that is used for simultaneous estimation of pathway activity levels using enzyme participation levels in each pathway. We implement the novel pipeline to RNA-seq data from several groups of mice, which provides a deeper look at the biochemical changes occurring as a result of bacterial infection, disease, and immune response. Our results show that estimated enzyme expression, pathway activity levels, and enzyme participation levels in each pathway are robust and stable across all samples. Estimated activity levels of a significant number of metabolic pathways strongly correlate with the infected and uninfected status of the respective rodent types.

估计感染博雷利杆菌和未感染博雷利杆菌小鼠的酶表达和代谢途径活性
评估代谢途径活性的变化对于研究疾病机制和开发新的治疗方法至关重要,对人类健康大有裨益。在此,我们提出了基于期望最大化算法的最大似然管道 EMPathways2,它能够评估酶的表达和代谢途径的活性水平。我们首先从 RNA-seq 数据中估算酶的表达量,然后利用酶在各通路中的参与度同时估算通路的活性水平。我们对几组小鼠的 RNA-seq 数据实施了这一新型管道,从而更深入地了解了细菌感染、疾病和免疫反应导致的生化变化。我们的研究结果表明,在所有样本中,估计的酶表达量、通路活性水平以及酶在每条通路中的参与水平都是稳健而稳定的。大量代谢途径的估计活性水平与相应啮齿类动物的感染和未感染状态密切相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Biology
Journal of Computational Biology 生物-计算机:跨学科应用
CiteScore
3.60
自引率
5.90%
发文量
113
审稿时长
6-12 weeks
期刊介绍: Journal of Computational Biology is the leading peer-reviewed journal in computational biology and bioinformatics, publishing in-depth statistical, mathematical, and computational analysis of methods, as well as their practical impact. Available only online, this is an essential journal for scientists and students who want to keep abreast of developments in bioinformatics. Journal of Computational Biology coverage includes: -Genomics -Mathematical modeling and simulation -Distributed and parallel biological computing -Designing biological databases -Pattern matching and pattern detection -Linking disparate databases and data -New tools for computational biology -Relational and object-oriented database technology for bioinformatics -Biological expert system design and use -Reasoning by analogy, hypothesis formation, and testing by machine -Management of biological databases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信