FADS1/2 control lipid metabolism and ferroptosis susceptibility in triple-negative breast cancer.

IF 9 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
EMBO Molecular Medicine Pub Date : 2024-07-01 Epub Date: 2024-06-26 DOI:10.1038/s44321-024-00090-6
Nicla Lorito, Angela Subbiani, Alfredo Smiriglia, Marina Bacci, Francesca Bonechi, Laura Tronci, Elisabetta Romano, Alessia Corrado, Dario Livio Longo, Marta Iozzo, Luigi Ippolito, Giuseppina Comito, Elisa Giannoni, Icro Meattini, Alexandra Avgustinova, Paola Chiarugi, Angela Bachi, Andrea Morandi
{"title":"FADS1/2 control lipid metabolism and ferroptosis susceptibility in triple-negative breast cancer.","authors":"Nicla Lorito, Angela Subbiani, Alfredo Smiriglia, Marina Bacci, Francesca Bonechi, Laura Tronci, Elisabetta Romano, Alessia Corrado, Dario Livio Longo, Marta Iozzo, Luigi Ippolito, Giuseppina Comito, Elisa Giannoni, Icro Meattini, Alexandra Avgustinova, Paola Chiarugi, Angela Bachi, Andrea Morandi","doi":"10.1038/s44321-024-00090-6","DOIUrl":null,"url":null,"abstract":"<p><p>Triple-negative breast cancer (TNBC) has limited therapeutic options, is highly metastatic and characterized by early recurrence. Lipid metabolism is generally deregulated in TNBC and might reveal vulnerabilities to be targeted or used as biomarkers with clinical value. Ferroptosis is a type of cell death caused by iron-dependent lipid peroxidation which is facilitated by the presence of polyunsaturated fatty acids (PUFA). Here we identify fatty acid desaturases 1 and 2 (FADS1/2), which are responsible for PUFA biosynthesis, to be highly expressed in a subset of TNBC with a poorer prognosis. Lipidomic analysis, coupled with functional metabolic assays, showed that FADS1/2 high-expressing TNBC are susceptible to ferroptosis-inducing agents and that targeting FADS1/2 by both genetic interference and pharmacological approach renders those tumors ferroptosis-resistant while unbalancing PUFA/MUFA ratio by the supplementation of exogenous PUFA sensitizes resistant tumors to ferroptosis induction. Last, inhibiting lipid droplet (LD) formation and turnover suppresses the buffering capacity of LD and potentiates iron-dependent cell death. These findings have been validated in vitro and in vivo in mouse- and human-derived clinically relevant models and in a retrospective cohort of TNBC patients.</p>","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":" ","pages":"1533-1559"},"PeriodicalIF":9.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11251055/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s44321-024-00090-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Triple-negative breast cancer (TNBC) has limited therapeutic options, is highly metastatic and characterized by early recurrence. Lipid metabolism is generally deregulated in TNBC and might reveal vulnerabilities to be targeted or used as biomarkers with clinical value. Ferroptosis is a type of cell death caused by iron-dependent lipid peroxidation which is facilitated by the presence of polyunsaturated fatty acids (PUFA). Here we identify fatty acid desaturases 1 and 2 (FADS1/2), which are responsible for PUFA biosynthesis, to be highly expressed in a subset of TNBC with a poorer prognosis. Lipidomic analysis, coupled with functional metabolic assays, showed that FADS1/2 high-expressing TNBC are susceptible to ferroptosis-inducing agents and that targeting FADS1/2 by both genetic interference and pharmacological approach renders those tumors ferroptosis-resistant while unbalancing PUFA/MUFA ratio by the supplementation of exogenous PUFA sensitizes resistant tumors to ferroptosis induction. Last, inhibiting lipid droplet (LD) formation and turnover suppresses the buffering capacity of LD and potentiates iron-dependent cell death. These findings have been validated in vitro and in vivo in mouse- and human-derived clinically relevant models and in a retrospective cohort of TNBC patients.

FADS1/2 控制三阴性乳腺癌的脂质代谢和铁病易感性。
三阴性乳腺癌(TNBC)的治疗方案有限,具有高度转移性和早期复发的特点。TNBC 中的脂质代谢通常会发生失调,这可能会揭示其薄弱环节,从而成为具有临床价值的靶标或生物标记物。铁中毒是一种由铁依赖性脂质过氧化引起的细胞死亡,多不饱和脂肪酸(PUFA)的存在促进了铁中毒的发生。在这里,我们发现负责多不饱和脂肪酸生物合成的脂肪酸去饱和酶 1 和 2(FADS1/2)在预后较差的 TNBC 亚群中高度表达。脂质组学分析和功能代谢试验表明,FADS1/2高表达的TNBC易受铁变态反应诱导剂的影响,而通过基因干扰和药理学方法靶向FADS1/2可使这些肿瘤对铁变态反应产生抗性,同时通过补充外源性PUFA来平衡PUFA/MUFA的比例可使抗性肿瘤对铁变态反应诱导敏感。最后,抑制脂滴(LD)的形成和周转可抑制 LD 的缓冲能力,并促进铁依赖性细胞死亡。这些发现已在小鼠和人源临床相关模型的体外和体内以及 TNBC 患者的回顾性队列中得到验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
EMBO Molecular Medicine
EMBO Molecular Medicine 医学-医学:研究与实验
CiteScore
17.70
自引率
0.90%
发文量
105
审稿时长
4-8 weeks
期刊介绍: EMBO Molecular Medicine is an open access journal in the field of experimental medicine, dedicated to science at the interface between clinical research and basic life sciences. In addition to human data, we welcome original studies performed in cells and/or animals provided they demonstrate human disease relevance. To enhance and better specify our commitment to precision medicine, we have expanded the scope of EMM and call for contributions in the following fields: Environmental health and medicine, in particular studies in the field of environmental medicine in its functional and mechanistic aspects (exposome studies, toxicology, biomarkers, modeling, and intervention). Clinical studies and case reports - Human clinical studies providing decisive clues how to control a given disease (epidemiological, pathophysiological, therapeutic, and vaccine studies). Case reports supporting hypothesis-driven research on the disease. Biomedical technologies - Studies that present innovative materials, tools, devices, and technologies with direct translational potential and applicability (imaging technologies, drug delivery systems, tissue engineering, and AI)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信