Alexander Wlodawer, Zbigniew Dauter, Jacek Lubkowski, Joanna I Loch, Dariusz Brzezinski, Miroslaw Gilski, Mariusz Jaskolski
{"title":"Towards a dependable data set of structures for L-asparaginase research.","authors":"Alexander Wlodawer, Zbigniew Dauter, Jacek Lubkowski, Joanna I Loch, Dariusz Brzezinski, Miroslaw Gilski, Mariusz Jaskolski","doi":"10.1107/S2059798324005461","DOIUrl":null,"url":null,"abstract":"<p><p>The Protein Data Bank (PDB) includes a carefully curated treasury of experimentally derived structural data on biological macromolecules and their various complexes. Such information is fundamental for a multitude of projects that involve large-scale data mining and/or detailed evaluation of individual structures of importance to chemistry, biology and, most of all, to medicine, where it provides the foundation for structure-based drug discovery. However, despite extensive validation mechanisms, it is almost inevitable that among the ∼215 000 entries there will occasionally be suboptimal or incorrect structure models. It is thus vital to apply careful verification procedures to those segments of the PDB that are of direct medicinal interest. Here, such an analysis was carried out for crystallographic models of L-asparaginases, enzymes that include approved drugs for the treatment of certain types of leukemia. The focus was on the adherence of the atomic coordinates to the rules of stereochemistry and their agreement with the experimental electron-density maps. Whereas the current clinical application of L-asparaginases is limited to two bacterial proteins and their chemical modifications, the field of investigations of such enzymes has expanded tremendously in recent years with the discovery of three entirely different structural classes and with numerous reports, not always quite reliable, of the anticancer properties of L-asparaginases of different origins.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":" ","pages":"506-527"},"PeriodicalIF":2.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11220836/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica. Section D, Structural Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1107/S2059798324005461","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The Protein Data Bank (PDB) includes a carefully curated treasury of experimentally derived structural data on biological macromolecules and their various complexes. Such information is fundamental for a multitude of projects that involve large-scale data mining and/or detailed evaluation of individual structures of importance to chemistry, biology and, most of all, to medicine, where it provides the foundation for structure-based drug discovery. However, despite extensive validation mechanisms, it is almost inevitable that among the ∼215 000 entries there will occasionally be suboptimal or incorrect structure models. It is thus vital to apply careful verification procedures to those segments of the PDB that are of direct medicinal interest. Here, such an analysis was carried out for crystallographic models of L-asparaginases, enzymes that include approved drugs for the treatment of certain types of leukemia. The focus was on the adherence of the atomic coordinates to the rules of stereochemistry and their agreement with the experimental electron-density maps. Whereas the current clinical application of L-asparaginases is limited to two bacterial proteins and their chemical modifications, the field of investigations of such enzymes has expanded tremendously in recent years with the discovery of three entirely different structural classes and with numerous reports, not always quite reliable, of the anticancer properties of L-asparaginases of different origins.
期刊介绍:
Acta Crystallographica Section D welcomes the submission of articles covering any aspect of structural biology, with a particular emphasis on the structures of biological macromolecules or the methods used to determine them.
Reports on new structures of biological importance may address the smallest macromolecules to the largest complex molecular machines. These structures may have been determined using any structural biology technique including crystallography, NMR, cryoEM and/or other techniques. The key criterion is that such articles must present significant new insights into biological, chemical or medical sciences. The inclusion of complementary data that support the conclusions drawn from the structural studies (such as binding studies, mass spectrometry, enzyme assays, or analysis of mutants or other modified forms of biological macromolecule) is encouraged.
Methods articles may include new approaches to any aspect of biological structure determination or structure analysis but will only be accepted where they focus on new methods that are demonstrated to be of general applicability and importance to structural biology. Articles describing particularly difficult problems in structural biology are also welcomed, if the analysis would provide useful insights to others facing similar problems.