Asymptotically compatible energy of variable-step fractional BDF2 scheme for the time-fractional Cahn–Hilliard model

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Hong-lin Liao, Nan Liu, Xuan Zhao
{"title":"Asymptotically compatible energy of variable-step fractional BDF2 scheme for the time-fractional Cahn–Hilliard model","authors":"Hong-lin Liao, Nan Liu, Xuan Zhao","doi":"10.1093/imanum/drae034","DOIUrl":null,"url":null,"abstract":"A novel discrete gradient structure of the variable-step fractional BDF2 formula approximating the Caputo fractional derivative of order $\\alpha \\in (0,1)$ is constructed by a local-nonlocal splitting technique, that is, the fractional BDF2 formula is split into a local part analogue to the two-step backward differentiation formula (BDF2) of the first derivative and a nonlocal part analogue to the L1-type formula of the Caputo derivative. Then a local discrete energy dissipation law of the variable-step fractional BDF2 implicit scheme is established for the time-fractional Cahn–Hilliard model under a weak step-ratio constraint $0.3960\\le \\tau _{k}/\\tau _{k-1}<r^{*}(\\alpha )$, where $\\tau _{k}$ is the $k$th time-step size and $r^{*}(\\alpha )\\ge 4.660$ for $\\alpha \\in (0,1)$. The present result provides a practical answer to the open problem in [SINUM, 57: 218-237, Remark 6] and significantly relaxes the severe step-ratio restriction [Math. Comp., 90: 19–40, Theorem 3.2]. More interestingly, the discrete energy and the corresponding energy dissipation law are asymptotically compatible with the associated discrete energy and the energy dissipation law of the variable-step BDF2 method for the classical Cahn–Hilliard equation, respectively. To the best of our knowledge, such type energy dissipation law is established at the first time for the variable-step L2 type formula of Caputo’s derivative. Numerical examples with an adaptive stepping procedure are provided to demonstrate the accuracy and the effectiveness of our proposed method.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"334 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/drae034","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

A novel discrete gradient structure of the variable-step fractional BDF2 formula approximating the Caputo fractional derivative of order $\alpha \in (0,1)$ is constructed by a local-nonlocal splitting technique, that is, the fractional BDF2 formula is split into a local part analogue to the two-step backward differentiation formula (BDF2) of the first derivative and a nonlocal part analogue to the L1-type formula of the Caputo derivative. Then a local discrete energy dissipation law of the variable-step fractional BDF2 implicit scheme is established for the time-fractional Cahn–Hilliard model under a weak step-ratio constraint $0.3960\le \tau _{k}/\tau _{k-1}<r^{*}(\alpha )$, where $\tau _{k}$ is the $k$th time-step size and $r^{*}(\alpha )\ge 4.660$ for $\alpha \in (0,1)$. The present result provides a practical answer to the open problem in [SINUM, 57: 218-237, Remark 6] and significantly relaxes the severe step-ratio restriction [Math. Comp., 90: 19–40, Theorem 3.2]. More interestingly, the discrete energy and the corresponding energy dissipation law are asymptotically compatible with the associated discrete energy and the energy dissipation law of the variable-step BDF2 method for the classical Cahn–Hilliard equation, respectively. To the best of our knowledge, such type energy dissipation law is established at the first time for the variable-step L2 type formula of Caputo’s derivative. Numerical examples with an adaptive stepping procedure are provided to demonstrate the accuracy and the effectiveness of our proposed method.
时间分数卡恩-希利亚德模型的变步分数 BDF2 方案的渐近兼容能量
通过局部-非局部拆分技术构建了近似于阶数为 $\alpha \in (0,1)$ 的 Caputo 分导数的变步长分式 BDF2 公式的新型离散梯度结构,即将分式 BDF2 公式拆分为类似于一阶导数的两步反向微分公式(BDF2)的局部部分和类似于 Caputo 导数的 L1 型公式的非局部部分。然后在弱步长比约束$0下建立了时间分式Cahn-Hilliard模型的变步长分式BDF2隐式方案的局部离散能量耗散规律。3960\le \tau _{k}/\tau _{k-1}<r^{*}(\alpha )$,其中$\tau _{k}$ 是第k$个时间步长,$r^{*}(\alpha )\ge 4.660$ for $\alpha \ in (0,1)$.本结果为[SINUM, 57: 218-237, Remark 6]中的开放问题提供了一个实际答案,并大大放宽了严格的步长比限制[Math.]更有趣的是,离散能量和相应的能量耗散规律分别与经典 Cahn-Hilliard 方程的变步长 BDF2 方法的相关离散能量和能量耗散规律渐近兼容。据我们所知,这种类型的能量耗散规律是首次针对卡普托导数的变步长 L2 型公式建立的。为了证明我们提出的方法的准确性和有效性,我们提供了带有自适应步进程序的数值示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信