Universal Phenomenology at Critical Exceptional Points of Nonequilibrium O(N) Models

IF 11.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Carl Philipp Zelle, Romain Daviet, Achim Rosch, Sebastian Diehl
{"title":"Universal Phenomenology at Critical Exceptional Points of Nonequilibrium O(N) Models","authors":"Carl Philipp Zelle, Romain Daviet, Achim Rosch, Sebastian Diehl","doi":"10.1103/physrevx.14.021052","DOIUrl":null,"url":null,"abstract":"In thermal equilibrium the dynamics of phase transitions is largely controlled by fluctuation-dissipation relations: On the one hand, friction suppresses fluctuations, while on the other hand, the thermal noise is proportional to friction constants. Out of equilibrium, this balance dissolves and one can have situations where friction vanishes due to antidamping in the presence of a finite noise level. We study a wide class of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"normal\">O</mi><mo stretchy=\"false\">(</mo><mi>N</mi><mo stretchy=\"false\">)</mo></mrow></math> field theories where this situation is realized at a phase transition, which we identify as a critical exceptional point. In the ordered phase, antidamping induces a continuous limit cycle rotation of the order parameter with an enhanced number of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>2</mn><mi>N</mi><mo>−</mo><mn>3</mn></math> Goldstone modes. Close to the critical exceptional point, however, fluctuations diverge so strongly due to the suppression of friction that in dimensions <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi><mo>&lt;</mo><mn>4</mn></math> they universally either destroy a preexisting static order or give rise to a fluctuation-induced first-order transition. This is demonstrated within a full resummation of loop corrections via Dyson-Schwinger equations for <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>N</mi><mo>=</mo><mn>2</mn></math>, and a generalization for arbitrary <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>N</mi></math>, which can be solved in the long wavelength limit. We show that in order to realize this physics it is not necessary to drive a system far out of equilibrium: Using the peculiar protection of Goldstone modes, the transition from an <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>x</mi><mi>y</mi></math> magnet to a ferrimagnet is governed by an exceptional critical point once weakly perturbed away from thermal equilibrium.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":null,"pages":null},"PeriodicalIF":11.6000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.14.021052","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In thermal equilibrium the dynamics of phase transitions is largely controlled by fluctuation-dissipation relations: On the one hand, friction suppresses fluctuations, while on the other hand, the thermal noise is proportional to friction constants. Out of equilibrium, this balance dissolves and one can have situations where friction vanishes due to antidamping in the presence of a finite noise level. We study a wide class of O(N) field theories where this situation is realized at a phase transition, which we identify as a critical exceptional point. In the ordered phase, antidamping induces a continuous limit cycle rotation of the order parameter with an enhanced number of 2N3 Goldstone modes. Close to the critical exceptional point, however, fluctuations diverge so strongly due to the suppression of friction that in dimensions d<4 they universally either destroy a preexisting static order or give rise to a fluctuation-induced first-order transition. This is demonstrated within a full resummation of loop corrections via Dyson-Schwinger equations for N=2, and a generalization for arbitrary N, which can be solved in the long wavelength limit. We show that in order to realize this physics it is not necessary to drive a system far out of equilibrium: Using the peculiar protection of Goldstone modes, the transition from an xy magnet to a ferrimagnet is governed by an exceptional critical point once weakly perturbed away from thermal equilibrium.

Abstract Image

非平衡 O(N)模型临界异常点的普遍现象学
在热平衡状态下,相变的动力学很大程度上受波动-消散关系的控制:一方面,摩擦会抑制波动,另一方面,热噪声与摩擦常数成正比。在平衡状态之外,这种平衡会消失,在有限噪声水平下,摩擦会由于反阻尼而消失。我们研究了一大类 O(N) 场理论,在这些理论中,这种情况会在相变阶段出现,我们将其称为临界例外点。在有序阶段,反阻尼会导致有序参数的连续极限循环旋转,同时增加 2N-3 金石模式的数量。然而,在临界超常点附近,由于摩擦的抑制,波动发散如此强烈,以至于在维数为 d<4 的情况下,它们普遍要么破坏了预先存在的静态有序,要么引起波动诱导的一阶转变。我们通过戴森-施温格方程对 N=2 的环路修正进行了完全重述,并对任意 N 进行了概括,从而在长波长极限中求解,证明了这一点。我们证明,要实现这一物理现象,并不需要使系统远远偏离平衡状态:利用金石模式的奇特保护,从 xy 磁体到铁磁体的转变受一个特殊临界点的支配,一旦受到微弱扰动就会远离热平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review X
Physical Review X PHYSICS, MULTIDISCIPLINARY-
CiteScore
24.60
自引率
1.60%
发文量
197
审稿时长
3 months
期刊介绍: Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信