Fred Willie Zametkin LaPolla, Marco Barber Grossi, Sharon Chen, Tai Wei Guo, Kathryn Havranek, Olivia Jebb, Minh Thu Nguyen, Sneha Panganamamula, Noah Smith, Shree Sundaresh, Jonathan Yu, Gabrielle Mayer
{"title":"All of whom? Limitations encountered using All of Us Researcher Workbench in a Primary Care residents secondary data analysis research training block.","authors":"Fred Willie Zametkin LaPolla, Marco Barber Grossi, Sharon Chen, Tai Wei Guo, Kathryn Havranek, Olivia Jebb, Minh Thu Nguyen, Sneha Panganamamula, Noah Smith, Shree Sundaresh, Jonathan Yu, Gabrielle Mayer","doi":"10.1093/jamia/ocae162","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The goal of this case report is to detail experiences and challenges experienced in the training of Primary Care residents in secondary analysis using All of Us Researcher Workbench. At our large, urban safety net hospital, Primary Care/Internal Medicine residents in their third year undergo a research intensive block, the Research Practicum, where they work as a team to conduct secondary data analysis on a dataset with faculty facilitation. In 2023, this research block focused on use of the All of Us Researcher Workbench for secondary data analysis.</p><p><strong>Materials and methods: </strong>Two groups of 5 residents underwent training to access the All of Us Researcher Workbench, and each group explored available data with a faculty facilitator and generated original research questions. Two blocks of residents successfully completed their research blocks and created original presentations on \"social isolation and A1C\" levels and \"medical discrimination and diabetes management.\"</p><p><strong>Results: </strong>Departmental faculty were satisfied with the depth of learning and data exploration. In focus groups, some residents noted that for those without interest in performing research, the activity felt extraneous to their career goals, while others were glad for the opportunity to publish. In both blocks, residents highlighted dissatisfaction with the degree to which the All of Us Researcher Workbench was representative of patients they encounter in a large safety net hospital.</p><p><strong>Discussion: </strong>Using the All of Us Researcher Workbench provided residents with an opportunity to explore novel questions in a massive data source. Many residents however noted that because the population described in the All of Us Researcher Workbench appeared to be more highly educated and less racially diverse than patients they encounter in their practice, research may be hard to generalize in a community health context. Additionally, given that the data required knowledge of 1 of 2 code-based data analysis languages (R or Python) and work within an idiosyncratic coding environment, residents were heavily reliant on a faculty facilitator to assist with analysis.</p><p><strong>Conclusion: </strong>Using the All of Us Researcher Workbench for research training allowed residents to explore novel questions and gain first-hand exposure to opportunities and challenges in secondary data analysis.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":" ","pages":"3008-3012"},"PeriodicalIF":4.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631142/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Medical Informatics Association","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1093/jamia/ocae162","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: The goal of this case report is to detail experiences and challenges experienced in the training of Primary Care residents in secondary analysis using All of Us Researcher Workbench. At our large, urban safety net hospital, Primary Care/Internal Medicine residents in their third year undergo a research intensive block, the Research Practicum, where they work as a team to conduct secondary data analysis on a dataset with faculty facilitation. In 2023, this research block focused on use of the All of Us Researcher Workbench for secondary data analysis.
Materials and methods: Two groups of 5 residents underwent training to access the All of Us Researcher Workbench, and each group explored available data with a faculty facilitator and generated original research questions. Two blocks of residents successfully completed their research blocks and created original presentations on "social isolation and A1C" levels and "medical discrimination and diabetes management."
Results: Departmental faculty were satisfied with the depth of learning and data exploration. In focus groups, some residents noted that for those without interest in performing research, the activity felt extraneous to their career goals, while others were glad for the opportunity to publish. In both blocks, residents highlighted dissatisfaction with the degree to which the All of Us Researcher Workbench was representative of patients they encounter in a large safety net hospital.
Discussion: Using the All of Us Researcher Workbench provided residents with an opportunity to explore novel questions in a massive data source. Many residents however noted that because the population described in the All of Us Researcher Workbench appeared to be more highly educated and less racially diverse than patients they encounter in their practice, research may be hard to generalize in a community health context. Additionally, given that the data required knowledge of 1 of 2 code-based data analysis languages (R or Python) and work within an idiosyncratic coding environment, residents were heavily reliant on a faculty facilitator to assist with analysis.
Conclusion: Using the All of Us Researcher Workbench for research training allowed residents to explore novel questions and gain first-hand exposure to opportunities and challenges in secondary data analysis.
期刊介绍:
JAMIA is AMIA''s premier peer-reviewed journal for biomedical and health informatics. Covering the full spectrum of activities in the field, JAMIA includes informatics articles in the areas of clinical care, clinical research, translational science, implementation science, imaging, education, consumer health, public health, and policy. JAMIA''s articles describe innovative informatics research and systems that help to advance biomedical science and to promote health. Case reports, perspectives and reviews also help readers stay connected with the most important informatics developments in implementation, policy and education.