Unifying quantification methods for sexual selection and assortative mating using information theory

IF 1.2 4区 生物学 Q4 ECOLOGY
A. Carvajal-Rodríguez
{"title":"Unifying quantification methods for sexual selection and assortative mating using information theory","authors":"A. Carvajal-Rodríguez","doi":"10.1016/j.tpb.2024.06.007","DOIUrl":null,"url":null,"abstract":"<div><p>Sexual selection plays a crucial role in modern evolutionary theory, offering valuable insight into evolutionary patterns and species diversity. Recently, a comprehensive definition of sexual selection has been proposed, defining it as any selection that arises from fitness differences associated with nonrandom success in the competition for access to gametes for fertilization. Previous research on discrete traits demonstrated that non-random mating can be effectively quantified using Jeffreys (or symmetrized Kullback-Leibler) divergence, capturing information acquired through mating influenced by mutual mating propensities instead of random occurrences. This novel theoretical framework allows for detecting and assessing the strength of sexual selection and assortative mating.</p><p>In this study, we aim to achieve two primary objectives. Firstly, we demonstrate the seamless alignment of the previous theoretical development, rooted in information theory and mutual mating propensity, with the aforementioned definition of sexual selection. Secondly, we extend the theory to encompass quantitative traits. Our findings reveal that sexual selection and assortative mating can be quantified effectively for quantitative traits by measuring the information gain relative to the random mating pattern. The connection of the information indices of sexual selection with the classical measures of sexual selection is established.</p><p>Additionally, if mating traits are normally distributed, the measure capturing the underlying information of assortative mating is a function of the square of the correlation coefficient, taking values within the non-negative real number set [0, +∞).</p><p>It is worth noting that the same divergence measure captures information acquired through mating for both discrete and quantitative traits. This is interesting as it provides a common context and can help simplify the study of sexual selection patterns.</p></div>","PeriodicalId":49437,"journal":{"name":"Theoretical Population Biology","volume":"158 ","pages":"Pages 206-215"},"PeriodicalIF":1.2000,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0040580924000650/pdfft?md5=a22dea1ed5eeb299ff36e9cf8734d81b&pid=1-s2.0-S0040580924000650-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Population Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040580924000650","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Sexual selection plays a crucial role in modern evolutionary theory, offering valuable insight into evolutionary patterns and species diversity. Recently, a comprehensive definition of sexual selection has been proposed, defining it as any selection that arises from fitness differences associated with nonrandom success in the competition for access to gametes for fertilization. Previous research on discrete traits demonstrated that non-random mating can be effectively quantified using Jeffreys (or symmetrized Kullback-Leibler) divergence, capturing information acquired through mating influenced by mutual mating propensities instead of random occurrences. This novel theoretical framework allows for detecting and assessing the strength of sexual selection and assortative mating.

In this study, we aim to achieve two primary objectives. Firstly, we demonstrate the seamless alignment of the previous theoretical development, rooted in information theory and mutual mating propensity, with the aforementioned definition of sexual selection. Secondly, we extend the theory to encompass quantitative traits. Our findings reveal that sexual selection and assortative mating can be quantified effectively for quantitative traits by measuring the information gain relative to the random mating pattern. The connection of the information indices of sexual selection with the classical measures of sexual selection is established.

Additionally, if mating traits are normally distributed, the measure capturing the underlying information of assortative mating is a function of the square of the correlation coefficient, taking values within the non-negative real number set [0, +∞).

It is worth noting that the same divergence measure captures information acquired through mating for both discrete and quantitative traits. This is interesting as it provides a common context and can help simplify the study of sexual selection patterns.

利用信息论统一性选择和同类交配的量化方法。
性选择在现代进化理论中起着至关重要的作用,它为了解进化模式和物种多样性提供了宝贵的见解。最近,有人对性选择提出了一个全面的定义,将其界定为在获得受精配子的竞争中与非随机成功相关的适应性差异所产生的任何选择。以前对离散性状的研究表明,非随机交配可以通过杰弗里斯(或对称库尔贝克-莱伯勒)分歧有效地量化,从而捕捉到受相互交配倾向影响而不是随机发生的交配所获得的信息。这种新颖的理论框架可用于检测和评估性选择和同类交配的强度。在这项研究中,我们旨在实现两个主要目标。首先,我们证明了之前以信息论和相互交配倾向为基础的理论发展与上述性选择定义的无缝对接。其次,我们将这一理论扩展到数量性状。我们的研究结果表明,通过测量相对于随机交配模式的信息增益,性选择和同配可以有效地量化数量性状。性选择的信息指数与性选择的经典测量方法之间的联系已经建立。此外,如果交配性状是正态分布的,则捕捉同类交配基本信息的测量值是相关系数平方的函数,取值范围是非负实数集[0,+∞]。值得注意的是,相同的分歧度量可以捕捉到离散性状和数量性状通过交配获得的信息。这一点很有意思,因为它提供了一个共同的背景,有助于简化性选择模式的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theoretical Population Biology
Theoretical Population Biology 生物-进化生物学
CiteScore
2.50
自引率
14.30%
发文量
43
审稿时长
6-12 weeks
期刊介绍: An interdisciplinary journal, Theoretical Population Biology presents articles on theoretical aspects of the biology of populations, particularly in the areas of demography, ecology, epidemiology, evolution, and genetics. Emphasis is on the development of mathematical theory and models that enhance the understanding of biological phenomena. Articles highlight the motivation and significance of the work for advancing progress in biology, relying on a substantial mathematical effort to obtain biological insight. The journal also presents empirical results and computational and statistical methods directly impinging on theoretical problems in population biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信