hp-version C1-continuous Petrov–Galerkin method for nonlinear second-order initial value problems with application to wave equations

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Lina Wang, Mingzhu Zhang, Hongjiong Tian, Lijun Yi
{"title":"hp-version C1-continuous Petrov–Galerkin method for nonlinear second-order initial value problems with application to wave equations","authors":"Lina Wang, Mingzhu Zhang, Hongjiong Tian, Lijun Yi","doi":"10.1093/imanum/drae036","DOIUrl":null,"url":null,"abstract":"We introduce and analyze an $hp$-version $C^{1}$-continuous Petrov–Galerkin (CPG) method for nonlinear initial value problems of second-order ordinary differential equations. We derive a-priori error estimates in the $L^{2}$-, $L^{\\infty }$-, $H^{1}$- and $H^{2}$-norms that are completely explicit in the local time steps and local approximation degrees. Moreover, we show that the $hp$-version $C^{1}$-CPG method superconverges at the nodal points of the time partition with regard to the time steps and approximation degrees. As an application, we apply the $hp$-version $C^{1}$-CPG method to time discretization of nonlinear wave equations. Several numerical examples are presented to verify the theoretical results.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/drae036","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce and analyze an $hp$-version $C^{1}$-continuous Petrov–Galerkin (CPG) method for nonlinear initial value problems of second-order ordinary differential equations. We derive a-priori error estimates in the $L^{2}$-, $L^{\infty }$-, $H^{1}$- and $H^{2}$-norms that are completely explicit in the local time steps and local approximation degrees. Moreover, we show that the $hp$-version $C^{1}$-CPG method superconverges at the nodal points of the time partition with regard to the time steps and approximation degrees. As an application, we apply the $hp$-version $C^{1}$-CPG method to time discretization of nonlinear wave equations. Several numerical examples are presented to verify the theoretical results.
非线性二阶初值问题的 hp 版本 C1 连续 Petrov-Galerkin 方法在波方程中的应用
我们介绍并分析了用于二阶常微分方程非线性初值问题的 $hp$ 版本 $C^{1}$-continuous Petrov-Galerkin (CPG) 方法。我们推导出$L^{2}$-、$L^{\infty }$-、$H^{1}$-和$H^{2}$-规范中的先验误差估计值,这些误差估计值在局部时间步长和局部逼近度中是完全显式的。此外,我们还证明了 $hp$ 版本的 $C^{1}$-CPG 方法在时间分区的结点处超收敛,与时间步长和近似度有关。作为应用,我们将$hp$版$C^{1}$-CPG方法应用于非线性波方程的时间离散化。我们给出了几个数值示例来验证理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信