Sparse Index Tracking: Simultaneous Asset Selection and Capital Allocation via ℓ0 -Constrained Portfolio

IF 2.9 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Eisuke Yamagata;Shunsuke Ono
{"title":"Sparse Index Tracking: Simultaneous Asset Selection and Capital Allocation via ℓ0 -Constrained Portfolio","authors":"Eisuke Yamagata;Shunsuke Ono","doi":"10.1109/OJSP.2024.3389810","DOIUrl":null,"url":null,"abstract":"Sparse index tracking is a prominent passive portfolio management strategy that constructs a sparse portfolio to track a financial index. A sparse portfolio is preferable to a full portfolio in terms of reducing transaction costs and avoiding illiquid assets. To achieve portfolio sparsity, conventional studies have utilized \n<inline-formula><tex-math>$\\ell _{p}$</tex-math></inline-formula>\n-norm regularizations as a continuous surrogate of the \n<inline-formula><tex-math>$\\ell _{0}$</tex-math></inline-formula>\n-norm regularization. Although these formulations can construct sparse portfolios, their practical application is challenging due to the intricate and time-consuming process of tuning parameters to define the precise upper limit of assets in the portfolio. In this paper, we propose a new problem formulation of sparse index tracking using an \n<inline-formula><tex-math>$\\ell _{0}$</tex-math></inline-formula>\n-norm constraint that enables easy control of the upper bound on the number of assets in the portfolio. Moreover, our approach offers a choice between constraints on portfolio and turnover sparsity, further reducing transaction costs by limiting asset updates at each rebalancing interval. Furthermore, we develop an efficient algorithm for solving this problem based on a primal-dual splitting method. Finally, we illustrate the effectiveness of the proposed method through experiments on the S&P500 and Russell3000 index datasets.","PeriodicalId":73300,"journal":{"name":"IEEE open journal of signal processing","volume":"5 ","pages":"810-819"},"PeriodicalIF":2.9000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10502015","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of signal processing","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10502015/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Sparse index tracking is a prominent passive portfolio management strategy that constructs a sparse portfolio to track a financial index. A sparse portfolio is preferable to a full portfolio in terms of reducing transaction costs and avoiding illiquid assets. To achieve portfolio sparsity, conventional studies have utilized $\ell _{p}$ -norm regularizations as a continuous surrogate of the $\ell _{0}$ -norm regularization. Although these formulations can construct sparse portfolios, their practical application is challenging due to the intricate and time-consuming process of tuning parameters to define the precise upper limit of assets in the portfolio. In this paper, we propose a new problem formulation of sparse index tracking using an $\ell _{0}$ -norm constraint that enables easy control of the upper bound on the number of assets in the portfolio. Moreover, our approach offers a choice between constraints on portfolio and turnover sparsity, further reducing transaction costs by limiting asset updates at each rebalancing interval. Furthermore, we develop an efficient algorithm for solving this problem based on a primal-dual splitting method. Finally, we illustrate the effectiveness of the proposed method through experiments on the S&P500 and Russell3000 index datasets.
稀疏指数跟踪:通过 ℓ0 受限投资组合同时进行资产选择和资本配置
稀疏指数跟踪是一种著名的被动投资组合管理策略,通过构建稀疏投资组合来跟踪金融指数。稀疏投资组合比完整投资组合更能降低交易成本,避免流动性差的资产。为了实现投资组合的稀疏性,传统研究利用$\ell _{p}$正则化作为$\ell _{0}$正则化的连续替代。虽然这些公式可以构建稀疏的投资组合,但由于调整参数以定义投资组合中资产的精确上限的过程复杂而耗时,其实际应用具有挑战性。在本文中,我们提出了一种使用 $\ell _{0}$ 矩阵约束的稀疏指数跟踪新问题表述,可以轻松控制投资组合中的资产数量上限。此外,我们的方法还提供了投资组合稀疏性和周转稀疏性约束之间的选择,通过限制每次再平衡间隔的资产更新,进一步降低了交易成本。此外,我们还开发了一种基于原始二元分割法的高效算法来解决这个问题。最后,我们通过在 S&P500 和 Russell3000 指数数据集上的实验说明了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.30
自引率
0.00%
发文量
0
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信