{"title":"Single-cell Transcriptomic Studies Unveil Potential Nodes of the Notochord Gene Regulatory Network.","authors":"Lenny J Negrón-Piñeiro, Anna Di Gregorio","doi":"10.1093/icb/icae084","DOIUrl":null,"url":null,"abstract":"<p><p>Transcription factors (TFs) are DNA-binding proteins able to modulate the timing, location, and levels of gene expression by binding to regulatory DNA regions. Therefore, the repertoire of TFs present in the genome of a multicellular organism and the expression of variable constellations of TFs in different cellular cohorts determine the distinctive characteristics of developing tissues and organs. The information on tissue-specific assortments of TFs, their cross-regulatory interactions, and the genes/regulatory regions targeted by each TF is summarized in gene regulatory networks (GRNs), which provide genetic blueprints for the specification, development, and differentiation of multicellular structures. In this study, we review recent transcriptomic studies focused on the complement of TFs expressed in the notochord, a distinctive feature of all chordates. We analyzed notochord-specific datasets available from organisms representative of the three chordate subphyla, and highlighted lineage-specific variations in the suite of TFs expressed in their notochord. We framed the resulting findings within a provisional evolutionary scenario, which allows the formulation of hypotheses on the genetic/genomic changes that sculpted the structure and function of the notochord on an evolutionary scale.</p>","PeriodicalId":54971,"journal":{"name":"Integrative and Comparative Biology","volume":" ","pages":"1194-1213"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579531/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative and Comparative Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/icb/icae084","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Transcription factors (TFs) are DNA-binding proteins able to modulate the timing, location, and levels of gene expression by binding to regulatory DNA regions. Therefore, the repertoire of TFs present in the genome of a multicellular organism and the expression of variable constellations of TFs in different cellular cohorts determine the distinctive characteristics of developing tissues and organs. The information on tissue-specific assortments of TFs, their cross-regulatory interactions, and the genes/regulatory regions targeted by each TF is summarized in gene regulatory networks (GRNs), which provide genetic blueprints for the specification, development, and differentiation of multicellular structures. In this study, we review recent transcriptomic studies focused on the complement of TFs expressed in the notochord, a distinctive feature of all chordates. We analyzed notochord-specific datasets available from organisms representative of the three chordate subphyla, and highlighted lineage-specific variations in the suite of TFs expressed in their notochord. We framed the resulting findings within a provisional evolutionary scenario, which allows the formulation of hypotheses on the genetic/genomic changes that sculpted the structure and function of the notochord on an evolutionary scale.
期刊介绍:
Integrative and Comparative Biology ( ICB ), formerly American Zoologist , is one of the most highly respected and cited journals in the field of biology. The journal''s primary focus is to integrate the varying disciplines in this broad field, while maintaining the highest scientific quality. ICB''s peer-reviewed symposia provide first class syntheses of the top research in a field. ICB also publishes book reviews, reports, and special bulletins.