Clarifying Causal Effects of Interest and Underlying Assumptions in Randomized and Nonrandomized Clinical Trials in Oncology Using Directed Acyclic Graphs and Single-World Intervention Graphs.

IF 3.3 Q2 ONCOLOGY
Shiro Tanaka, Yuriko Muramatsu, Kosuke Inoue
{"title":"Clarifying Causal Effects of Interest and Underlying Assumptions in Randomized and Nonrandomized Clinical Trials in Oncology Using Directed Acyclic Graphs and Single-World Intervention Graphs.","authors":"Shiro Tanaka, Yuriko Muramatsu, Kosuke Inoue","doi":"10.1200/CCI.23.00262","DOIUrl":null,"url":null,"abstract":"<p><p>Recent clinical trials in oncology have used increasingly complex methodologies, such as causal inference methods for intercurrent events, external control, and covariate adjustment, posing challenges in clarifying the estimand and underlying assumptions. This article proposes expressing causal structures using graphical tools-directed acyclic graphs (DAGs) and single-world intervention graphs (SWIGs)-in the planning phase of a clinical trial. It presents five rules for selecting a sufficient set of adjustment variables on the basis of a diagram representing the clinical trial, along with three case studies of randomized and single-arm trials and a brief tutorial on DAG and SWIG. Through the case studies, DAGs appear effective in clarifying assumptions for identifying causal effects, although SWIGs should complement DAGs due to their limitations in the presence of intercurrent events in oncology research.</p>","PeriodicalId":51626,"journal":{"name":"JCO Clinical Cancer Informatics","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11371110/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCO Clinical Cancer Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1200/CCI.23.00262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Recent clinical trials in oncology have used increasingly complex methodologies, such as causal inference methods for intercurrent events, external control, and covariate adjustment, posing challenges in clarifying the estimand and underlying assumptions. This article proposes expressing causal structures using graphical tools-directed acyclic graphs (DAGs) and single-world intervention graphs (SWIGs)-in the planning phase of a clinical trial. It presents five rules for selecting a sufficient set of adjustment variables on the basis of a diagram representing the clinical trial, along with three case studies of randomized and single-arm trials and a brief tutorial on DAG and SWIG. Through the case studies, DAGs appear effective in clarifying assumptions for identifying causal effects, although SWIGs should complement DAGs due to their limitations in the presence of intercurrent events in oncology research.

利用有向无环图和单一世界干预图明确肿瘤学随机和非随机临床试验中感兴趣的因果效应和基本假设。
最近的肿瘤学临床试验使用了越来越复杂的方法,例如针对并发症、外部控制和协变量调整的因果推断方法,这给明确估计和基本假设带来了挑战。本文建议在临床试验的规划阶段使用图形工具--定向无循环图(DAG)和单世界干预图(SWIG)--来表达因果结构。文章介绍了在表示临床试验的图表的基础上选择足够的调整变量集的五条规则,以及随机试验和单臂试验的三个案例研究和关于 DAG 和 SWIG 的简要教程。通过案例研究,DAG 似乎能有效地澄清确定因果效应的假设,尽管 SWIG 因其在肿瘤研究中存在并发症的局限性而应作为 DAG 的补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
4.80%
发文量
190
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信