Zhengang Wei, Xiaohua Wang, Liqin Lu, Su Li, Wenyan Long, Lin Zhang, Shaolin Shen
{"title":"Construction of an Early Risk Prediction Model for Type 2 Diabetic Peripheral Neuropathy Based on Random Forest.","authors":"Zhengang Wei, Xiaohua Wang, Liqin Lu, Su Li, Wenyan Long, Lin Zhang, Shaolin Shen","doi":"10.1097/CIN.0000000000001157","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic peripheral neuropathy is a major cause of disability and death in the later stages of diabetes. A retrospective chart review was performed using a hospital-based electronic medical record database to identify 1020 patients who met the criteria. The objective of this study was to explore and analyze the early risk factors for peripheral neuropathy in patients with type 2 diabetes, even in the absence of specific clinical symptoms or signs. Finally, the random forest algorithm was used to rank the influencing factors and construct a predictive model, and then the model performance was evaluated. Logistic regression analysis revealed that vitamin D plays a crucial protective role in preventing diabetic peripheral neuropathy. The top three risk factors with significant contributions to the model in the random forest algorithm eigenvalue ranking were glycosylated hemoglobin, disease duration, and vitamin D. The areas under the receiver operating characteristic curve of the model ware 0.90. The accuracy, precision, specificity, and sensitivity were 0.85, 0.83, 0.92, and 0.71, respectively. The predictive model, which is based on the random forest algorithm, is intended to support clinical decision-making by healthcare professionals and help them target timely interventions to key factors in early diabetic peripheral neuropathy.</p>","PeriodicalId":50694,"journal":{"name":"Cin-Computers Informatics Nursing","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cin-Computers Informatics Nursing","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/CIN.0000000000001157","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetic peripheral neuropathy is a major cause of disability and death in the later stages of diabetes. A retrospective chart review was performed using a hospital-based electronic medical record database to identify 1020 patients who met the criteria. The objective of this study was to explore and analyze the early risk factors for peripheral neuropathy in patients with type 2 diabetes, even in the absence of specific clinical symptoms or signs. Finally, the random forest algorithm was used to rank the influencing factors and construct a predictive model, and then the model performance was evaluated. Logistic regression analysis revealed that vitamin D plays a crucial protective role in preventing diabetic peripheral neuropathy. The top three risk factors with significant contributions to the model in the random forest algorithm eigenvalue ranking were glycosylated hemoglobin, disease duration, and vitamin D. The areas under the receiver operating characteristic curve of the model ware 0.90. The accuracy, precision, specificity, and sensitivity were 0.85, 0.83, 0.92, and 0.71, respectively. The predictive model, which is based on the random forest algorithm, is intended to support clinical decision-making by healthcare professionals and help them target timely interventions to key factors in early diabetic peripheral neuropathy.
期刊介绍:
For over 30 years, CIN: Computers, Informatics, Nursing has been at the interface of the science of information and the art of nursing, publishing articles on the latest developments in nursing informatics, research, education and administrative of health information technology. CIN connects you with colleagues as they share knowledge on implementation of electronic health records systems, design decision-support systems, incorporate evidence-based healthcare in practice, explore point-of-care computing in practice and education, and conceptually integrate nursing languages and standard data sets. Continuing education contact hours are available in every issue.