Pere Bosch-Barceló, Maria Masbernat-Almenara, Oriol Martínez-Navarro, Carlos Tersa-Miralles, Anni Pakarinen, Helena Fernández-Lago
{"title":"A gamified virtual environment intervention for gait rehabilitation in Parkinson's Disease: co-creation and feasibility study.","authors":"Pere Bosch-Barceló, Maria Masbernat-Almenara, Oriol Martínez-Navarro, Carlos Tersa-Miralles, Anni Pakarinen, Helena Fernández-Lago","doi":"10.1186/s12984-024-01399-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Treadmill gait training has been shown to improve gait performance in People with Parkinson's Disease (PwPD), and in combination with Virtual Reality, it can be an effective tool for gait rehabilitation. The addition of gamification elements can create a more stimulating and adherent intervention. However, implementation of new technologies in healthcare can be challenging. This study aimed to develop and evaluate the feasibility of a treadmill rehabilitation program in a Gamified Virtual Reality Environment (GVRE) for PwPD.</p><p><strong>Methods: </strong>The GVRE was developed following a user-centered design approach, involving both PwPD and physiotherapists in the development and evaluation of the intervention. The intervention consisted of a walking simulation in three different environments (countryside, city, and park), which had a progressive increase in difficulty. To test its feasibility, three sessions were carried out with four PwPD and four physiotherapists. To assess the usability, the System Usability Scale (SUS), Assistive Technology Usability Questionnaire for people with Neurological diseases (NATU Quest) and Simulator Sickness Questionnaire (SSQ) were used. To assess the intervention's acceptability, feedback and in-game performance was collected from participants.</p><p><strong>Results: </strong>Results showed the feasibility of the intervention, with a SUS score of 74.82 ± 12.62, and a NATU Quest score of 4.49 ± 0.62, and positive acceptability feedback. Participants showed clear preferences for naturalistic environments, and gamification elements were seen as positive. Difficulty settings worked as intended, but lowered enjoyment of the experience in some cases.</p><p><strong>Conclusions: </strong>This intervention was successfully shown as a feasible option for the training of gait under Dual Task conditions for PwPD. It offers a safe and replicable environment in which complex situations can be trained. However, further iterations of the intervention need to be improved in order to guarantee accurate tracking and a more realistic training progression.</p><p><strong>Trial registration number: </strong>NCT05243394-01/20/2022.</p>","PeriodicalId":16384,"journal":{"name":"Journal of NeuroEngineering and Rehabilitation","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11194924/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of NeuroEngineering and Rehabilitation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12984-024-01399-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Treadmill gait training has been shown to improve gait performance in People with Parkinson's Disease (PwPD), and in combination with Virtual Reality, it can be an effective tool for gait rehabilitation. The addition of gamification elements can create a more stimulating and adherent intervention. However, implementation of new technologies in healthcare can be challenging. This study aimed to develop and evaluate the feasibility of a treadmill rehabilitation program in a Gamified Virtual Reality Environment (GVRE) for PwPD.
Methods: The GVRE was developed following a user-centered design approach, involving both PwPD and physiotherapists in the development and evaluation of the intervention. The intervention consisted of a walking simulation in three different environments (countryside, city, and park), which had a progressive increase in difficulty. To test its feasibility, three sessions were carried out with four PwPD and four physiotherapists. To assess the usability, the System Usability Scale (SUS), Assistive Technology Usability Questionnaire for people with Neurological diseases (NATU Quest) and Simulator Sickness Questionnaire (SSQ) were used. To assess the intervention's acceptability, feedback and in-game performance was collected from participants.
Results: Results showed the feasibility of the intervention, with a SUS score of 74.82 ± 12.62, and a NATU Quest score of 4.49 ± 0.62, and positive acceptability feedback. Participants showed clear preferences for naturalistic environments, and gamification elements were seen as positive. Difficulty settings worked as intended, but lowered enjoyment of the experience in some cases.
Conclusions: This intervention was successfully shown as a feasible option for the training of gait under Dual Task conditions for PwPD. It offers a safe and replicable environment in which complex situations can be trained. However, further iterations of the intervention need to be improved in order to guarantee accurate tracking and a more realistic training progression.
期刊介绍:
Journal of NeuroEngineering and Rehabilitation considers manuscripts on all aspects of research that result from cross-fertilization of the fields of neuroscience, biomedical engineering, and physical medicine & rehabilitation.