Sashana Dixon, Ann Tenneil O'connor, Chloe Brooks-Noreiga, Michelle A Clark, Arkene Levy, Ana M Castejon
{"title":"Role of renin angiotensin system inhibitors and metformin in Glioblastoma Therapy: a review.","authors":"Sashana Dixon, Ann Tenneil O'connor, Chloe Brooks-Noreiga, Michelle A Clark, Arkene Levy, Ana M Castejon","doi":"10.1007/s00280-024-04686-0","DOIUrl":null,"url":null,"abstract":"<p><p>Glioblastoma multiforme (GBM) is a highly aggressive and incurable disease accounting for about 10,000 deaths in the USA each year. Despite the current treatment approach which includes surgery with chemotherapy and radiation therapy, there remains a high prevalence of recurrence. Notable improvements have been observed in persons receiving concurrent antihypertensive drugs such as renin angiotensin inhibitors (RAS) or the antidiabetic drug metformin with standard therapy. Anti-tumoral effects of RAS inhibitors and metformin have been observed in in vitro and in vivo studies. Although clinical trials have shown mixed results, the potential for the use of RAS inhibitors and metformin as adjuvant GBM therapy remains promising. Nevertheless, evidence suggest that these drugs exert multimodal antitumor actions; by particularly targeting several cancer hallmarks. In this review, we highlight the results of clinical studies using multidrug cocktails containing RAS inhibitors and or metformin added to standard therapy for GBM. In addition, we highlight the possible molecular mechanisms by which these repurposed drugs with an excellent safety profile might elicit their anti-tumoral effects. RAS inhibition elicits anti-inflammatory, anti-angiogenic, and immune sensitivity effects in GBM. However, metformin promotes anti-migratory, anti-proliferative and pro-apoptotic effects mainly through the activation of AMP-activated protein kinase. Also, we discussed metformin's potential in targeting both GBM cells as well as GBM associated-stem cells. Finally, we summarize a few drug interactions that may cause an additive or antagonistic effect that may lead to adverse effects and influence treatment outcome.</p>","PeriodicalId":9556,"journal":{"name":"Cancer Chemotherapy and Pharmacology","volume":" ","pages":"1-23"},"PeriodicalIF":2.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Chemotherapy and Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00280-024-04686-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive and incurable disease accounting for about 10,000 deaths in the USA each year. Despite the current treatment approach which includes surgery with chemotherapy and radiation therapy, there remains a high prevalence of recurrence. Notable improvements have been observed in persons receiving concurrent antihypertensive drugs such as renin angiotensin inhibitors (RAS) or the antidiabetic drug metformin with standard therapy. Anti-tumoral effects of RAS inhibitors and metformin have been observed in in vitro and in vivo studies. Although clinical trials have shown mixed results, the potential for the use of RAS inhibitors and metformin as adjuvant GBM therapy remains promising. Nevertheless, evidence suggest that these drugs exert multimodal antitumor actions; by particularly targeting several cancer hallmarks. In this review, we highlight the results of clinical studies using multidrug cocktails containing RAS inhibitors and or metformin added to standard therapy for GBM. In addition, we highlight the possible molecular mechanisms by which these repurposed drugs with an excellent safety profile might elicit their anti-tumoral effects. RAS inhibition elicits anti-inflammatory, anti-angiogenic, and immune sensitivity effects in GBM. However, metformin promotes anti-migratory, anti-proliferative and pro-apoptotic effects mainly through the activation of AMP-activated protein kinase. Also, we discussed metformin's potential in targeting both GBM cells as well as GBM associated-stem cells. Finally, we summarize a few drug interactions that may cause an additive or antagonistic effect that may lead to adverse effects and influence treatment outcome.
期刊介绍:
Addressing a wide range of pharmacologic and oncologic concerns on both experimental and clinical levels, Cancer Chemotherapy and Pharmacology is an eminent journal in the field. The primary focus in this rapid publication medium is on new anticancer agents, their experimental screening, preclinical toxicology and pharmacology, single and combined drug administration modalities, and clinical phase I, II and III trials. It is essential reading for pharmacologists and oncologists giving results recorded in the following areas: clinical toxicology, pharmacokinetics, pharmacodynamics, drug interactions, and indications for chemotherapy in cancer treatment strategy.