Exploring the influence of metal cations on individual hydrogen bonds in Watson–Crick guanine–cytosine DNA base pair: An interacting quantum atoms analysis

IF 3.4 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
F. Pakzad, K. Eskandari
{"title":"Exploring the influence of metal cations on individual hydrogen bonds in Watson–Crick guanine–cytosine DNA base pair: An interacting quantum atoms analysis","authors":"F. Pakzad,&nbsp;K. Eskandari","doi":"10.1002/jcc.27441","DOIUrl":null,"url":null,"abstract":"<p>This study delves into the nature of individual hydrogen bonds and the relationship between metal cations and hydrogen bonding in the Watson–Crick guanine–cytosine (GC) base pair and its alkali and alkaline earth cation-containing complexes (M<sup>n+</sup>–GC). The findings reveal how metal cations affect the nature and strength of individual hydrogen bonds. The study employs interacting quantum atoms (IQA) analysis to comprehensively understand three individual hydrogen bonds within the GC base pair and its cationic derivatives. These analyses unveil the nature and strength of hydrogen bonds and serve as a valuable reference for exploring the impact of cations (and other factors) on each hydrogen bond. All the H<span></span><math>\n <mrow>\n <mi>⋯</mi>\n </mrow></math>D interactions (H is hydrogen and D is oxygen or nitrogen) in the GC base pair are primarily electrostatic in nature, with the charge transfer component playing a substantial role. Introducing a metal cation perturbs all H<span></span><math>\n <mrow>\n <mi>⋯</mi>\n </mrow></math>D interatomic interactions in the system, weakening the nearest hydrogen bond to the cation (indicated by <b><i>a</i></b>) and reinforcing the other (<b><i>b</i></b> and <b><i>c</i></b>) interactions. Notably, the interaction <b><i>a</i></b>, the strongest H<span></span><math>\n <mrow>\n <mi>⋯</mi>\n </mrow></math>D interaction in the GC base pair, becomes the weakest in the M<sup><i>n</i>+</sup>–GC complexes. A broader perspective on the stability of GC and M<sup><i>n</i>+</sup>–GC complexes is provided through interacting quantum fragments (IQF) analysis. This approach considers all pairwise interactions between fragments and intra-fragment components, offering a complete view of the factors that stabilize and destabilize GC and M<sup><i>n</i>+</sup>–GC complexes. The IQF analysis underscores the importance of electron sharing, with the dominant contribution arising from the inter-fragment exchange-correlation term, in shaping and sustaining GC and M<sup><i>n</i>+</sup>–GC complexes. From this point of view, alkaline and alkaline earth cations have distinct effects, with alkaline cations generally weakening inter-fragment interactions and alkaline earth cations strengthening them. In addition, IQA and IQF calculations demonstrate that the hydration of cations led to small changes in the hydrogen bonding network. Finally, the IQA interatomic energies associated with the hydrogen bonds and also inter-fragment interaction energies provide robust indicators for characterizing hydrogen bonds and complex stability, showing a strong correlation with total interaction energies.</p>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"45 28","pages":"2397-2408"},"PeriodicalIF":3.4000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcc.27441","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study delves into the nature of individual hydrogen bonds and the relationship between metal cations and hydrogen bonding in the Watson–Crick guanine–cytosine (GC) base pair and its alkali and alkaline earth cation-containing complexes (Mn+–GC). The findings reveal how metal cations affect the nature and strength of individual hydrogen bonds. The study employs interacting quantum atoms (IQA) analysis to comprehensively understand three individual hydrogen bonds within the GC base pair and its cationic derivatives. These analyses unveil the nature and strength of hydrogen bonds and serve as a valuable reference for exploring the impact of cations (and other factors) on each hydrogen bond. All the H D interactions (H is hydrogen and D is oxygen or nitrogen) in the GC base pair are primarily electrostatic in nature, with the charge transfer component playing a substantial role. Introducing a metal cation perturbs all H D interatomic interactions in the system, weakening the nearest hydrogen bond to the cation (indicated by a) and reinforcing the other (b and c) interactions. Notably, the interaction a, the strongest H D interaction in the GC base pair, becomes the weakest in the Mn+–GC complexes. A broader perspective on the stability of GC and Mn+–GC complexes is provided through interacting quantum fragments (IQF) analysis. This approach considers all pairwise interactions between fragments and intra-fragment components, offering a complete view of the factors that stabilize and destabilize GC and Mn+–GC complexes. The IQF analysis underscores the importance of electron sharing, with the dominant contribution arising from the inter-fragment exchange-correlation term, in shaping and sustaining GC and Mn+–GC complexes. From this point of view, alkaline and alkaline earth cations have distinct effects, with alkaline cations generally weakening inter-fragment interactions and alkaline earth cations strengthening them. In addition, IQA and IQF calculations demonstrate that the hydration of cations led to small changes in the hydrogen bonding network. Finally, the IQA interatomic energies associated with the hydrogen bonds and also inter-fragment interaction energies provide robust indicators for characterizing hydrogen bonds and complex stability, showing a strong correlation with total interaction energies.

Abstract Image

Abstract Image

探索金属阳离子对 Watson-Crick 鸟嘌呤-胞嘧啶 DNA 碱基对中单个氢键的影响:量子原子相互作用分析
本研究深入探讨了沃森-克里克鸟嘌呤-胞嘧啶(GC)碱基对及其含碱和碱土阳离子络合物(Mn+-GC)中单个氢键的性质以及金属阳离子与氢键之间的关系。研究结果揭示了金属阳离子如何影响单个氢键的性质和强度。研究采用了相互作用量子原子 (IQA) 分析方法,以全面了解 GC 碱基对及其阳离子衍生物中的三个氢键。这些分析揭示了氢键的性质和强度,为探索阳离子(和其他因素)对每个氢键的影响提供了宝贵的参考。GC 碱基对中的所有 H⋯$$ \cdots $$D 相互作用(H 为氢,D 为氧或氮)主要是静电性质的,其中电荷转移成分起着重要作用。引入金属阳离子会扰乱系统中所有 H⋯$$ \cdots $$D 原子间相互作用,削弱与阳离子最近的氢键(用 a 表示),并加强其他(b 和 c)相互作用。值得注意的是,GC 碱基对中最强的 H⋯$$ \cdots $$D 相互作用 a 在 Mn+-GC 复合物中变得最弱。通过相互作用量子片段(IQF)分析,我们可以从更广阔的角度了解 GC 和 Mn+-GC 复合物的稳定性。这种方法考虑了片段和片段内成分之间的所有成对相互作用,提供了一个关于 GC 和 Mn+-GC 复合物稳定和不稳定因素的完整视角。IQF 分析强调了电子共享的重要性,而片段间交换相关项在形成和维持 GC 和 Mn+-GC 复合物方面起着主导作用。从这个角度来看,碱性阳离子和碱土阳离子具有不同的影响,碱性阳离子通常会削弱碎片间的相互作用,而碱土阳离子则会加强这种作用。此外,IQA 和 IQF 计算表明,阳离子的水合作用导致氢键网络发生微小变化。最后,与氢键相关的 IQA 原子间能量以及片段间相互作用能量为描述氢键和复合物稳定性提供了可靠的指标,显示出与总相互作用能量的紧密相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.60
自引率
3.30%
发文量
247
审稿时长
1.7 months
期刊介绍: This distinguished journal publishes articles concerned with all aspects of computational chemistry: analytical, biological, inorganic, organic, physical, and materials. The Journal of Computational Chemistry presents original research, contemporary developments in theory and methodology, and state-of-the-art applications. Computational areas that are featured in the journal include ab initio and semiempirical quantum mechanics, density functional theory, molecular mechanics, molecular dynamics, statistical mechanics, cheminformatics, biomolecular structure prediction, molecular design, and bioinformatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信