Yuheng C. Fu, Arpan Das, Dongmei Wang, Rosemary Braun, Rui Yi
{"title":"scHolography: a computational method for single-cell spatial neighborhood reconstruction and analysis","authors":"Yuheng C. Fu, Arpan Das, Dongmei Wang, Rosemary Braun, Rui Yi","doi":"10.1186/s13059-024-03299-3","DOIUrl":null,"url":null,"abstract":"Spatial transcriptomics has transformed our ability to study tissue complexity. However, it remains challenging to accurately dissect tissue organization at single-cell resolution. Here we introduce scHolography, a machine learning-based method designed to reconstruct single-cell spatial neighborhoods and facilitate 3D tissue visualization using spatial and single-cell RNA sequencing data. scHolography employs a high-dimensional transcriptome-to-space projection that infers spatial relationships among cells, defining spatial neighborhoods and enhancing analyses of cell–cell communication. When applied to both human and mouse datasets, scHolography enables quantitative assessments of spatial cell neighborhoods, cell–cell interactions, and tumor-immune microenvironment. Together, scHolography offers a robust computational framework for elucidating 3D tissue organization and analyzing spatial dynamics at the cellular level.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":null,"pages":null},"PeriodicalIF":10.1000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-024-03299-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Spatial transcriptomics has transformed our ability to study tissue complexity. However, it remains challenging to accurately dissect tissue organization at single-cell resolution. Here we introduce scHolography, a machine learning-based method designed to reconstruct single-cell spatial neighborhoods and facilitate 3D tissue visualization using spatial and single-cell RNA sequencing data. scHolography employs a high-dimensional transcriptome-to-space projection that infers spatial relationships among cells, defining spatial neighborhoods and enhancing analyses of cell–cell communication. When applied to both human and mouse datasets, scHolography enables quantitative assessments of spatial cell neighborhoods, cell–cell interactions, and tumor-immune microenvironment. Together, scHolography offers a robust computational framework for elucidating 3D tissue organization and analyzing spatial dynamics at the cellular level.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.