Zijiang Song, Zhixiang Cheng, Yuying Li, Shanshan Yu, Xiaowen Zhang, Lina Yuan, Min Liu
{"title":"MDG625: A daily high-resolution meteorological dataset derived by geopotential-guided attention network in Asia (1940–2023)","authors":"Zijiang Song, Zhixiang Cheng, Yuying Li, Shanshan Yu, Xiaowen Zhang, Lina Yuan, Min Liu","doi":"10.5194/essd-2024-137","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> The long-term and reliable meteorological reanalysis dataset with high spatial-temporal resolution is crucial for various hydrological and meteorological applications, especially in regions or periods with scarce in situ observations and with limited open-access data. Based on the ERA5 (produced by the European Centre for Medium-Range Weather Forecasts, 0.25°×0.25°, since 1940) and CLDAS (China Meteorological Administration Land Data Assimilation System, 0.0625°×0.0625°, since 2008), we proposed a novel downscaling method Geopotential-guide Attention Network (GeoAN) leveraging the high spatial resolution of CLDAS and the extended historical coverage of ERA5 and produced the daily multi-variable (2 m temperature, surface pressure, and 10 m wind speed) meteorological dataset MDG625 (Song et al., 2024). MDG625 (0.0625° Meteorological Dataset derived by GeoAN) covers most of Asia from 0.125° S to 64.875° N and 60.125° E to 160.125° E since 1940. Compared with other downscaling methods, GeoAN shows better performance with the R<sup>2</sup> (2 m temperature, surface pressure, and 10 m wind speed reached 0.990, 0.998, and 0.781, respectively). MDG625 demonstrates superior continuity and consistency from both spatial and temporal perspectives. We anticipate that this GeoAN method and this dataset MDG625 will aid in climate studies of Asia and will contribute to improving the accuracy of reanalysis products from the 1940s. The dataset (Song et al., 2024) is presented in https://doi.org/10.57760/sciencedb.17408 and the code can be found in https://github.com/songzijiang/GeoAN.","PeriodicalId":48747,"journal":{"name":"Earth System Science Data","volume":null,"pages":null},"PeriodicalIF":11.2000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth System Science Data","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/essd-2024-137","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. The long-term and reliable meteorological reanalysis dataset with high spatial-temporal resolution is crucial for various hydrological and meteorological applications, especially in regions or periods with scarce in situ observations and with limited open-access data. Based on the ERA5 (produced by the European Centre for Medium-Range Weather Forecasts, 0.25°×0.25°, since 1940) and CLDAS (China Meteorological Administration Land Data Assimilation System, 0.0625°×0.0625°, since 2008), we proposed a novel downscaling method Geopotential-guide Attention Network (GeoAN) leveraging the high spatial resolution of CLDAS and the extended historical coverage of ERA5 and produced the daily multi-variable (2 m temperature, surface pressure, and 10 m wind speed) meteorological dataset MDG625 (Song et al., 2024). MDG625 (0.0625° Meteorological Dataset derived by GeoAN) covers most of Asia from 0.125° S to 64.875° N and 60.125° E to 160.125° E since 1940. Compared with other downscaling methods, GeoAN shows better performance with the R2 (2 m temperature, surface pressure, and 10 m wind speed reached 0.990, 0.998, and 0.781, respectively). MDG625 demonstrates superior continuity and consistency from both spatial and temporal perspectives. We anticipate that this GeoAN method and this dataset MDG625 will aid in climate studies of Asia and will contribute to improving the accuracy of reanalysis products from the 1940s. The dataset (Song et al., 2024) is presented in https://doi.org/10.57760/sciencedb.17408 and the code can be found in https://github.com/songzijiang/GeoAN.
Earth System Science DataGEOSCIENCES, MULTIDISCIPLINARYMETEOROLOGY-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
18.00
自引率
5.30%
发文量
231
审稿时长
35 weeks
期刊介绍:
Earth System Science Data (ESSD) is an international, interdisciplinary journal that publishes articles on original research data in order to promote the reuse of high-quality data in the field of Earth system sciences. The journal welcomes submissions of original data or data collections that meet the required quality standards and have the potential to contribute to the goals of the journal. It includes sections dedicated to regular-length articles, brief communications (such as updates to existing data sets), commentaries, review articles, and special issues. ESSD is abstracted and indexed in several databases, including Science Citation Index Expanded, Current Contents/PCE, Scopus, ADS, CLOCKSS, CNKI, DOAJ, EBSCO, Gale/Cengage, GoOA (CAS), and Google Scholar, among others.