{"title":"Quantum mechanical-based strategies in drug discovery: Finding the pace to new challenges in drug design","authors":"Tiziana Ginex , Javier Vázquez , Carolina Estarellas , F.Javier Luque","doi":"10.1016/j.sbi.2024.102870","DOIUrl":null,"url":null,"abstract":"<div><p>The expansion of the chemical space to tangible libraries containing billions of synthesizable molecules opens exciting opportunities for drug discovery, but also challenges the power of computer-aided drug design to prioritize the best candidates. This directly hits quantum mechanics (QM) methods, which provide chemically accurate properties, but subject to small-sized systems. Preserving accuracy while optimizing the computational cost is at the heart of many efforts to develop high-quality, efficient QM-based strategies, reflected in refined algorithms and computational approaches. The design of QM-tailored physics-based force fields and the coupling of QM with machine learning, in conjunction with the computing performance of supercomputing resources, will enhance the ability to use these methods in drug discovery. The challenge is formidable, but we will undoubtedly see impressive advances that will define a new era.</p></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"87 ","pages":"Article 102870"},"PeriodicalIF":6.1000,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0959440X24000976/pdfft?md5=f828d7ecdbd34fd28c30ce96229060ef&pid=1-s2.0-S0959440X24000976-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959440X24000976","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The expansion of the chemical space to tangible libraries containing billions of synthesizable molecules opens exciting opportunities for drug discovery, but also challenges the power of computer-aided drug design to prioritize the best candidates. This directly hits quantum mechanics (QM) methods, which provide chemically accurate properties, but subject to small-sized systems. Preserving accuracy while optimizing the computational cost is at the heart of many efforts to develop high-quality, efficient QM-based strategies, reflected in refined algorithms and computational approaches. The design of QM-tailored physics-based force fields and the coupling of QM with machine learning, in conjunction with the computing performance of supercomputing resources, will enhance the ability to use these methods in drug discovery. The challenge is formidable, but we will undoubtedly see impressive advances that will define a new era.
期刊介绍:
Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In COSB, we help the reader by providing in a systematic manner:
1. The views of experts on current advances in their field in a clear and readable form.
2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
[...]
The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance.
-Folding and Binding-
Nucleic acids and their protein complexes-
Macromolecular Machines-
Theory and Simulation-
Sequences and Topology-
New constructs and expression of proteins-
Membranes-
Engineering and Design-
Carbohydrate-protein interactions and glycosylation-
Biophysical and molecular biological methods-
Multi-protein assemblies in signalling-
Catalysis and Regulation