A five field formulation for flow simulations in porous media with fractures and barriers via an optimization based domain decomposition method

IF 3.5 3区 工程技术 Q1 MATHEMATICS, APPLIED
Stefano Scialò
{"title":"A five field formulation for flow simulations in porous media with fractures and barriers via an optimization based domain decomposition method","authors":"Stefano Scialò","doi":"10.1016/j.finel.2024.104204","DOIUrl":null,"url":null,"abstract":"<div><p>The present work deals with the numerical resolution of coupled 3D–2D problems arising from the simulation of fluid flow in fractured porous media modeled via the Discrete Fracture and Matrix (DFM) model. According to the DFM model, fractures are represented as planar interfaces immersed in a 3D porous matrix and can behave as preferential flow paths, in the case of conductive fractures, or can actually be a barrier for the flow, when, instead, the permeability in the normal-to-fracture direction is small compared to the permeability of the matrix. Consequently, the pressure solution in a DFM can be discontinuous across a barrier, as a result of the geometrical dimensional reduction operated on the fracture. The present work is aimed at developing a numerical scheme suitable for the simulation of the flow in a DFM with fractures and barriers, using a mesh for the 3D matrix non conforming to the fractures and that is ready for domain decomposition. This is achieved starting from a PDE-constrained optimization method, currently available in literature only for conductive fractures in a DFM. First, a novel formulation of the optimization problem is defined to account for non permeable fractures. These are described by a filtration-like coupling at the interface with the surrounding porous matrix. Also the extended finite element method with discontinuous enrichment functions is used to reproduce the pressure solution in the matrix around a barrier. The method is presented here in its simplest form, for clarity of exposition, i.e. considering the case of a single fracture in a 3D domain, also providing a proof of the well posedness of the resulting discrete problem. Four validation examples are proposed to show the viability and the effectiveness of the method.</p></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"238 ","pages":"Article 104204"},"PeriodicalIF":3.5000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168874X24000982/pdfft?md5=de89c0c6312a6ec62de2fffcd78e98ef&pid=1-s2.0-S0168874X24000982-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Elements in Analysis and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168874X24000982","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The present work deals with the numerical resolution of coupled 3D–2D problems arising from the simulation of fluid flow in fractured porous media modeled via the Discrete Fracture and Matrix (DFM) model. According to the DFM model, fractures are represented as planar interfaces immersed in a 3D porous matrix and can behave as preferential flow paths, in the case of conductive fractures, or can actually be a barrier for the flow, when, instead, the permeability in the normal-to-fracture direction is small compared to the permeability of the matrix. Consequently, the pressure solution in a DFM can be discontinuous across a barrier, as a result of the geometrical dimensional reduction operated on the fracture. The present work is aimed at developing a numerical scheme suitable for the simulation of the flow in a DFM with fractures and barriers, using a mesh for the 3D matrix non conforming to the fractures and that is ready for domain decomposition. This is achieved starting from a PDE-constrained optimization method, currently available in literature only for conductive fractures in a DFM. First, a novel formulation of the optimization problem is defined to account for non permeable fractures. These are described by a filtration-like coupling at the interface with the surrounding porous matrix. Also the extended finite element method with discontinuous enrichment functions is used to reproduce the pressure solution in the matrix around a barrier. The method is presented here in its simplest form, for clarity of exposition, i.e. considering the case of a single fracture in a 3D domain, also providing a proof of the well posedness of the resulting discrete problem. Four validation examples are proposed to show the viability and the effectiveness of the method.

通过基于优化的域分解法模拟带有裂缝和障碍物的多孔介质中的流动的五场计算公式
本研究涉及通过离散断裂与基质(DFM)模型模拟断裂多孔介质中流体流动所产生的三维-二维耦合问题的数值解析。根据 DFM 模型,裂缝被表示为浸没在三维多孔基质中的平面界面,在导电裂缝的情况下,裂缝可以作为优先流动通道,或者在法向裂缝方向的渗透率小于基质渗透率的情况下,裂缝实际上可以成为流动的障碍。因此,由于对断裂进行了几何尺寸缩减,DFM 中的压力解在障碍物上可能是不连续的。本研究旨在开发一种数值方案,适用于模拟带有裂缝和障碍物的 DFM 中的流动,该方案使用与裂缝不符的三维基体网格,并可进行域分解。这是从 PDE 受限优化方法开始的,目前文献中只有针对 DFM 中导电裂缝的优化方法。首先,定义了优化问题的新公式,以考虑非渗透性裂缝。这些裂缝通过与周围多孔基质界面的类似过滤的耦合来描述。此外,还使用了具有非连续富集函数的扩展有限元法来重现屏障周围基质中的压力解。为了阐述清楚,本文以最简单的形式介绍了该方法,即考虑三维域中单一断裂的情况,同时还证明了由此产生的离散问题的假设性。本文还提出了四个验证实例,以说明该方法的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
3.20%
发文量
92
审稿时长
27 days
期刊介绍: The aim of this journal is to provide ideas and information involving the use of the finite element method and its variants, both in scientific inquiry and in professional practice. The scope is intentionally broad, encompassing use of the finite element method in engineering as well as the pure and applied sciences. The emphasis of the journal will be the development and use of numerical procedures to solve practical problems, although contributions relating to the mathematical and theoretical foundations and computer implementation of numerical methods are likewise welcomed. Review articles presenting unbiased and comprehensive reviews of state-of-the-art topics will also be accommodated.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信