{"title":"Self-tunable approximated explicit MPC: Heat exchanger implementation and analysis","authors":"Lenka Galčíková, Juraj Oravec","doi":"10.1016/j.jprocont.2024.103260","DOIUrl":null,"url":null,"abstract":"<div><p>The tunable approximated explicit model predictive control (MPC) comes with the benefits of real-time tunability without the necessity of solving the optimization problem online. This paper provides a novel self-tunable control policy that does not require any interventions of the control engineer during operation in order to retune the controller subject to the changed working conditions. Based on the current operating conditions, the autonomous tuning parameter scales the control input using linear interpolation between the boundary optimal control actions. The adjustment of the tuning parameter depends on the current reference value, which makes this strategy suitable for reference tracking problems. Furthermore, a novel technique for scaling the tuning parameter is proposed. This extension provides to exploit different ranges of the tuning parameter assigned to specified operating conditions. The self-tunable explicit MPC was implemented on a laboratory heat exchanger with nonlinear and asymmetric behavior. The asymmetric behavior of the plant was compensated by tuning the controller’s aggressiveness, as the negative or positive sign of reference change was considered in the tuning procedure. The designed self-tunable controller improved control performance by decreasing sum-of-squared control error, maximal overshoots/undershoots, and settling time compared to the conventional control strategy based on a single (non-tunable) controller.</p></div>","PeriodicalId":50079,"journal":{"name":"Journal of Process Control","volume":"140 ","pages":"Article 103260"},"PeriodicalIF":3.3000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Process Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959152424001008","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The tunable approximated explicit model predictive control (MPC) comes with the benefits of real-time tunability without the necessity of solving the optimization problem online. This paper provides a novel self-tunable control policy that does not require any interventions of the control engineer during operation in order to retune the controller subject to the changed working conditions. Based on the current operating conditions, the autonomous tuning parameter scales the control input using linear interpolation between the boundary optimal control actions. The adjustment of the tuning parameter depends on the current reference value, which makes this strategy suitable for reference tracking problems. Furthermore, a novel technique for scaling the tuning parameter is proposed. This extension provides to exploit different ranges of the tuning parameter assigned to specified operating conditions. The self-tunable explicit MPC was implemented on a laboratory heat exchanger with nonlinear and asymmetric behavior. The asymmetric behavior of the plant was compensated by tuning the controller’s aggressiveness, as the negative or positive sign of reference change was considered in the tuning procedure. The designed self-tunable controller improved control performance by decreasing sum-of-squared control error, maximal overshoots/undershoots, and settling time compared to the conventional control strategy based on a single (non-tunable) controller.
期刊介绍:
This international journal covers the application of control theory, operations research, computer science and engineering principles to the solution of process control problems. In addition to the traditional chemical processing and manufacturing applications, the scope of process control problems involves a wide range of applications that includes energy processes, nano-technology, systems biology, bio-medical engineering, pharmaceutical processing technology, energy storage and conversion, smart grid, and data analytics among others.
Papers on the theory in these areas will also be accepted provided the theoretical contribution is aimed at the application and the development of process control techniques.
Topics covered include:
• Control applications• Process monitoring• Plant-wide control• Process control systems• Control techniques and algorithms• Process modelling and simulation• Design methods
Advanced design methods exclude well established and widely studied traditional design techniques such as PID tuning and its many variants. Applications in fields such as control of automotive engines, machinery and robotics are not deemed suitable unless a clear motivation for the relevance to process control is provided.