{"title":"Stochastic viability in an island model with partial dispersal: Approximation by a diffusion process in the limit of a large number of islands","authors":"Dhaker Kroumi , Sabin Lessard","doi":"10.1016/j.tpb.2024.06.003","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we investigate a finite population undergoing evolution through an island model with partial dispersal and without mutation, where generations are discrete and non-overlapping. The population is structured into <span><math><mi>D</mi></math></span> demes, each containing <span><math><mi>N</mi></math></span> individuals of two possible types, <span><math><mi>A</mi></math></span> and <span><math><mi>B</mi></math></span>, whose viability coefficients, <span><math><msub><mrow><mi>s</mi></mrow><mrow><mi>A</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>s</mi></mrow><mrow><mi>B</mi></mrow></msub></math></span>, respectively, vary randomly from one generation to the next. We assume that the means, variances and covariance of the viability coefficients are inversely proportional to the number of demes <span><math><mi>D</mi></math></span>, while higher-order moments are negligible in comparison to <span><math><mrow><mn>1</mn><mo>/</mo><mi>D</mi></mrow></math></span>. We use a discrete-time Markov chain with two timescales to model the evolutionary process, and we demonstrate that as the number of demes <span><math><mi>D</mi></math></span> approaches infinity, the accelerated Markov chain converges to a diffusion process for any deme size <span><math><mrow><mi>N</mi><mo>≥</mo><mn>2</mn></mrow></math></span>. This diffusion process allows us to evaluate the fixation probability of type <span><math><mi>A</mi></math></span> following its introduction as a single mutant in a population that was fixed for type <span><math><mi>B</mi></math></span>. We explore the impact of increasing the variability in the viability coefficients on this fixation probability. At least when <span><math><mi>N</mi></math></span> is large enough, it is shown that increasing this variability for type <span><math><mi>B</mi></math></span> or decreasing it for type <span><math><mi>A</mi></math></span> leads to an increase in the fixation probability of a single <span><math><mi>A</mi></math></span>. The effect of the population-scaled variances, <span><math><msubsup><mrow><mi>σ</mi></mrow><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> and <span><math><msubsup><mrow><mi>σ</mi></mrow><mrow><mi>B</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span>, can even cancel the effects of the population-scaled means, <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>A</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>B</mi></mrow></msub></math></span>. We also show that the fixation probability of a single <span><math><mi>A</mi></math></span> increases as the deme-scaled migration rate increases. Moreover, this probability is higher for type <span><math><mi>A</mi></math></span> than for type <span><math><mi>B</mi></math></span> if the population-scaled geometric mean viability coefficient is higher for type <span><math><mi>A</mi></math></span> than for type <span><math><mi>B</mi></math></span>, which means that <span><math><mrow><msub><mrow><mi>μ</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>−</mo><msubsup><mrow><mi>σ</mi></mrow><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>/</mo><mn>2</mn><mo>></mo><msub><mrow><mi>μ</mi></mrow><mrow><mi>B</mi></mrow></msub><mo>−</mo><msubsup><mrow><mi>σ</mi></mrow><mrow><mi>B</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>/</mo><mn>2</mn></mrow></math></span>.</p></div>","PeriodicalId":49437,"journal":{"name":"Theoretical Population Biology","volume":"158 ","pages":"Pages 170-184"},"PeriodicalIF":1.2000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Population Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040580924000637","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we investigate a finite population undergoing evolution through an island model with partial dispersal and without mutation, where generations are discrete and non-overlapping. The population is structured into demes, each containing individuals of two possible types, and , whose viability coefficients, and , respectively, vary randomly from one generation to the next. We assume that the means, variances and covariance of the viability coefficients are inversely proportional to the number of demes , while higher-order moments are negligible in comparison to . We use a discrete-time Markov chain with two timescales to model the evolutionary process, and we demonstrate that as the number of demes approaches infinity, the accelerated Markov chain converges to a diffusion process for any deme size . This diffusion process allows us to evaluate the fixation probability of type following its introduction as a single mutant in a population that was fixed for type . We explore the impact of increasing the variability in the viability coefficients on this fixation probability. At least when is large enough, it is shown that increasing this variability for type or decreasing it for type leads to an increase in the fixation probability of a single . The effect of the population-scaled variances, and , can even cancel the effects of the population-scaled means, and . We also show that the fixation probability of a single increases as the deme-scaled migration rate increases. Moreover, this probability is higher for type than for type if the population-scaled geometric mean viability coefficient is higher for type than for type , which means that .
在本文中,我们研究了一个有限种群的进化过程,该种群是通过部分扩散和无突变的岛屿模型进化而来的,其世代是离散和非重叠的。种群结构分为 D 个种群,每个种群包含 N 个个体,分别属于 A 和 B 两种可能的类型,其生存能力系数 sA 和 sB 在世代间随机变化。我们假设生命力系数的均值、方差和协方差与种群数量 D 成反比,而高阶矩与 1/D 相比可以忽略不计。我们使用具有两种时间尺度的离散-时间马尔可夫链来模拟演化过程,并证明了当种群数量 D 接近无穷大时,对于任何种群数量 N≥2 的种群,加速马尔可夫链都会收敛到一个扩散过程。通过这一扩散过程,我们可以评估 A 型作为单一突变体引入 B 型固定种群后的固定概率。至少当 N 足够大时,我们发现增加 B 型的变异性或减少 A 型的变异性都会导致单个 A 的固定概率增加。种群标度方差 σA2 和 σB2 的影响甚至可以抵消种群标度平均值 μA 和 μB 的影响。我们还发现,单个 A 的固定概率会随着种群迁移率的增加而增加。此外,如果 A 型的种群几何平均活力系数高于 B 型,则 A 型的固定概率高于 B 型,这意味着 μA-σA2/2>μB-σB2/2.
期刊介绍:
An interdisciplinary journal, Theoretical Population Biology presents articles on theoretical aspects of the biology of populations, particularly in the areas of demography, ecology, epidemiology, evolution, and genetics. Emphasis is on the development of mathematical theory and models that enhance the understanding of biological phenomena.
Articles highlight the motivation and significance of the work for advancing progress in biology, relying on a substantial mathematical effort to obtain biological insight. The journal also presents empirical results and computational and statistical methods directly impinging on theoretical problems in population biology.