The Structure and Function of the Bacterial Osmotically Inducible Protein Y

IF 4.7 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Aditya Iyer , Jacopo Frallicciardi , Ulric B.A. le Paige , Siddarth Narasimhan , Yanzhang Luo , Patricia Alvarez Sieiro , Lukasz Syga , Floris van den Brekel , Buu Minh Tran , Rendy Tjioe , Gea Schuurman-Wolters , Marc C.A. Stuart , Marc Baldus , Hugo van Ingen , Bert Poolman
{"title":"The Structure and Function of the Bacterial Osmotically Inducible Protein Y","authors":"Aditya Iyer ,&nbsp;Jacopo Frallicciardi ,&nbsp;Ulric B.A. le Paige ,&nbsp;Siddarth Narasimhan ,&nbsp;Yanzhang Luo ,&nbsp;Patricia Alvarez Sieiro ,&nbsp;Lukasz Syga ,&nbsp;Floris van den Brekel ,&nbsp;Buu Minh Tran ,&nbsp;Rendy Tjioe ,&nbsp;Gea Schuurman-Wolters ,&nbsp;Marc C.A. Stuart ,&nbsp;Marc Baldus ,&nbsp;Hugo van Ingen ,&nbsp;Bert Poolman","doi":"10.1016/j.jmb.2024.168668","DOIUrl":null,"url":null,"abstract":"<div><p>The ability to adapt to osmotically diverse and fluctuating environments is critical to the survival and resilience of bacteria that colonize the human gut and urinary tract. Environmental stress often provides cross-protection against other challenges and increases antibiotic tolerance of bacteria. Thus, it is critical to understand how <em>E. coli</em> and other microbes survive and adapt to stress conditions. The osmotically inducible protein Y (OsmY) is significantly upregulated in response to hypertonicity. Yet its function remains unknown for decades. We determined the solution structure and dynamics of OsmY by nuclear magnetic resonance spectroscopy, which revealed that the two Bacterial OsmY and Nodulation (BON) domains of the protein are flexibly linked under low- and high-salinity conditions. In-cell solid-state NMR further indicates that there are no gross structural changes in OsmY as a function of osmotic stress. Using cryo-electron and super-resolution fluorescence microscopy, we show that OsmY attenuates plasmolysis-induced structural changes in <em>E. coli</em> and improves the time to growth resumption after osmotic upshift. Structure-guided mutational and functional studies demonstrate that exposed hydrophobic residues in the BON1 domain are critical for the function of OsmY. We find no evidence for membrane interaction of the BON domains of OsmY, contrary to current assumptions. Instead, at high ionic strength, we observe an interaction with the water channel, AqpZ. Thus, OsmY does not play a simple structural role in <em>E. coli</em> but may influence a cascade of osmoregulatory functions of the cell.</p></div>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022283624002638/pdfft?md5=ce11fc27e2874e42e0edb34581422041&pid=1-s2.0-S0022283624002638-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022283624002638","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The ability to adapt to osmotically diverse and fluctuating environments is critical to the survival and resilience of bacteria that colonize the human gut and urinary tract. Environmental stress often provides cross-protection against other challenges and increases antibiotic tolerance of bacteria. Thus, it is critical to understand how E. coli and other microbes survive and adapt to stress conditions. The osmotically inducible protein Y (OsmY) is significantly upregulated in response to hypertonicity. Yet its function remains unknown for decades. We determined the solution structure and dynamics of OsmY by nuclear magnetic resonance spectroscopy, which revealed that the two Bacterial OsmY and Nodulation (BON) domains of the protein are flexibly linked under low- and high-salinity conditions. In-cell solid-state NMR further indicates that there are no gross structural changes in OsmY as a function of osmotic stress. Using cryo-electron and super-resolution fluorescence microscopy, we show that OsmY attenuates plasmolysis-induced structural changes in E. coli and improves the time to growth resumption after osmotic upshift. Structure-guided mutational and functional studies demonstrate that exposed hydrophobic residues in the BON1 domain are critical for the function of OsmY. We find no evidence for membrane interaction of the BON domains of OsmY, contrary to current assumptions. Instead, at high ionic strength, we observe an interaction with the water channel, AqpZ. Thus, OsmY does not play a simple structural role in E. coli but may influence a cascade of osmoregulatory functions of the cell.

Abstract Image

Abstract Image

细菌渗透诱导蛋白 Y 的结构和功能。
适应渗透压多样性和波动环境的能力对于定植于人体肠道和泌尿道的细菌的生存和恢复能力至关重要。环境压力通常会提供交叉保护,以应对其他挑战,并提高细菌对抗生素的耐受性。因此,了解大肠杆菌和其他微生物如何生存和适应压力条件至关重要。渗透诱导蛋白 Y(OsmY)在高渗条件下会显著上调。然而,几十年来它的功能一直不为人知。我们通过核磁共振光谱测定了 OsmY 的溶液结构和动力学,发现在低盐度和高盐度条件下,该蛋白质的两个细菌 OsmY 和结节(BON)结构域灵活地连接在一起。细胞内固态核磁共振进一步表明,OsmY 的结构并没有随着渗透压的变化而发生重大变化。利用低温电子显微镜和超分辨率荧光显微镜,我们发现 OsmY 可减轻质解诱导的大肠杆菌结构变化,并缩短渗透压上移后恢复生长的时间。结构引导突变和功能研究表明,BON1 结构域中暴露的疏水残基对 OsmY 的功能至关重要。我们没有发现 OsmY 的 BON 结构域与膜相互作用的证据,这与目前的假设相反。相反,在高离子强度下,我们观察到了与水通道 AqpZ 的相互作用。因此,OsmY 在大肠杆菌中扮演的不是一个简单的结构角色,而是可能影响细胞的一系列渗透调节功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Molecular Biology
Journal of Molecular Biology 生物-生化与分子生物学
CiteScore
11.30
自引率
1.80%
发文量
412
审稿时长
28 days
期刊介绍: Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions. Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信