Qualitative properties of fractional convolution elliptic and parabolic operators in Besov spaces

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Veli Shakhmurov, Rishad Shahmurov
{"title":"Qualitative properties of fractional convolution elliptic and parabolic operators in Besov spaces","authors":"Veli Shakhmurov, Rishad Shahmurov","doi":"10.1007/s13540-024-00302-3","DOIUrl":null,"url":null,"abstract":"<p>The maximal <span>\\(B_{p,q}^{s}\\)</span>-regularity properties of a fractional convolution elliptic equation is studied. Particularly, it is proven that the operator generated by this nonlocal elliptic equation is sectorial in <span>\\( B_{p,q}^{s}\\)</span> and also is a generator of an analytic semigroup. Moreover, well-posedeness of nonlocal fractional parabolic equation in Besov spaces is obtained. Then by using the <span>\\(B_{p,q}^{s}\\)</span>-regularity properties of linear problem, the existence, uniqueness of maximal regular solution of corresponding fractional nonlinear equation is established.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00302-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The maximal \(B_{p,q}^{s}\)-regularity properties of a fractional convolution elliptic equation is studied. Particularly, it is proven that the operator generated by this nonlocal elliptic equation is sectorial in \( B_{p,q}^{s}\) and also is a generator of an analytic semigroup. Moreover, well-posedeness of nonlocal fractional parabolic equation in Besov spaces is obtained. Then by using the \(B_{p,q}^{s}\)-regularity properties of linear problem, the existence, uniqueness of maximal regular solution of corresponding fractional nonlinear equation is established.

贝索夫空间中分数卷积椭圆和抛物线算子的定性特性
研究了分数卷积椭圆方程的最大 \(B_{p,q}^{s}\-regularity 特性。特别是,研究证明了由该非局部椭圆方程产生的算子在 \( B_{p,q}^{s}\) 中是扇形的,同时也是一个解析半群的生成器。此外,我们还得到了非局部分数抛物方程在 Besov 空间中的好拟性。然后利用线性问题的 \(B_{p,q}^{s}\)-正则性质,建立了相应分数非线性方程最大正则解的存在性和唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信