Niloufar Delfan, Mohammadreza Shahsavari, Sadiq Hussain, Robertas Damaševičius, U. Rajendra Acharya
{"title":"A Hybrid Deep Spatiotemporal Attention-Based Model for Parkinson's Disease Diagnosis Using Resting State EEG Signals","authors":"Niloufar Delfan, Mohammadreza Shahsavari, Sadiq Hussain, Robertas Damaševičius, U. Rajendra Acharya","doi":"10.1002/ima.23120","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Parkinson's disease (PD), a severe and progressive neurological illness, affects millions of individuals worldwide. For effective treatment and management of PD, an accurate and early diagnosis is crucial. This study presents a deep learning-based model for the diagnosis of PD using a resting state electroencephalogram (EEG) signal. The objective of the study is to develop an automated model that can extract complex hidden nonlinear features from EEG and demonstrate its generalizability on unseen data. The model is designed using a hybrid model, consisting of a convolutional neural network (CNN), bidirectional gated recurrent unit (Bi-GRU), and attention mechanism. The proposed method is evaluated on three public datasets (UC San Diego, PRED-CT, and University of Iowa [UI] dataset), with one dataset used for training and the other two for evaluation. The proposed model demonstrated remarkable performance, attaining high accuracy scores of 99.4%, 84%, and 73.2% using UC San Diego, PRED-CT, and UI datasets, respectively. These results justify the effectiveness and robustness of the proposed model across diverse datasets, highlighting its potential for versatile applications in data analysis and prediction tasks. Our proposed hybrid spatiotemporal attention-based model has been developed with 10-fold cross-validation (CV) for UC San Diego dataset and 10-fold CV and leave-one-out cross-validation (LOOCV) strategies for PRED-CT and UI datasets. Our results indicate that the proposed PD detection system is accurate and robust. The developed prototype can be used for other neurodegenerative diseases such as Alzheimer's disease, Huntington's disease, and so forth.</p>\n </div>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"34 4","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.23120","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Parkinson's disease (PD), a severe and progressive neurological illness, affects millions of individuals worldwide. For effective treatment and management of PD, an accurate and early diagnosis is crucial. This study presents a deep learning-based model for the diagnosis of PD using a resting state electroencephalogram (EEG) signal. The objective of the study is to develop an automated model that can extract complex hidden nonlinear features from EEG and demonstrate its generalizability on unseen data. The model is designed using a hybrid model, consisting of a convolutional neural network (CNN), bidirectional gated recurrent unit (Bi-GRU), and attention mechanism. The proposed method is evaluated on three public datasets (UC San Diego, PRED-CT, and University of Iowa [UI] dataset), with one dataset used for training and the other two for evaluation. The proposed model demonstrated remarkable performance, attaining high accuracy scores of 99.4%, 84%, and 73.2% using UC San Diego, PRED-CT, and UI datasets, respectively. These results justify the effectiveness and robustness of the proposed model across diverse datasets, highlighting its potential for versatile applications in data analysis and prediction tasks. Our proposed hybrid spatiotemporal attention-based model has been developed with 10-fold cross-validation (CV) for UC San Diego dataset and 10-fold CV and leave-one-out cross-validation (LOOCV) strategies for PRED-CT and UI datasets. Our results indicate that the proposed PD detection system is accurate and robust. The developed prototype can be used for other neurodegenerative diseases such as Alzheimer's disease, Huntington's disease, and so forth.
期刊介绍:
The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals.
IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging.
The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered.
The scope of the journal includes, but is not limited to, the following in the context of biomedical research:
Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.;
Neuromodulation and brain stimulation techniques such as TMS and tDCS;
Software and hardware for imaging, especially related to human and animal health;
Image segmentation in normal and clinical populations;
Pattern analysis and classification using machine learning techniques;
Computational modeling and analysis;
Brain connectivity and connectomics;
Systems-level characterization of brain function;
Neural networks and neurorobotics;
Computer vision, based on human/animal physiology;
Brain-computer interface (BCI) technology;
Big data, databasing and data mining.