Trellis Decoding for Qudit Stabilizer Codes and Its Application to Qubit Topological Codes

Eric Sabo;Arun B. Aloshious;Kenneth R. Brown
{"title":"Trellis Decoding for Qudit Stabilizer Codes and Its Application to Qubit Topological Codes","authors":"Eric Sabo;Arun B. Aloshious;Kenneth R. Brown","doi":"10.1109/TQE.2024.3401857","DOIUrl":null,"url":null,"abstract":"Trellis decoders are a general decoding technique first applied to qubit-based quantum error correction codes by Ollivier and Tillich in 2006. Here, we improve the scalability and practicality of their theory, show that it has strong structure, extend the results using classical coding theory as a guide, and demonstrate a canonical form from which the structural properties of the decoding graph may be computed. The resulting formalism is valid for any prime-dimensional quantum system. The modified decoder works for any stabilizer code \n<inline-formula><tex-math>$S$</tex-math></inline-formula>\n and separates into two parts: 1) a one-time offline computation that builds a compact graphical representation of the normalizer of the code, \n<inline-formula><tex-math>$\\mathcal {S}^{\\perp}$</tex-math></inline-formula>\n and 2) a quick, parallel, online query of the resulting vertices using the Viterbi algorithm. We show the utility of trellis decoding by applying it to four high-density length-20 stabilizer codes for depolarizing noise and the well-studied Steane, rotated surface, and 4.8.8/6.6.6 color codes for \n<inline-formula><tex-math>$Z$</tex-math></inline-formula>\n only noise. Numerical simulations demonstrate a 20% improvement in the code-capacity threshold for color codes with boundaries by avoiding the mapping from color codes to surface codes. We identify trellis edge number as a key metric of difficulty of decoding, allowing us to quantify the advantage of single-axis (\n<inline-formula><tex-math>$X$</tex-math></inline-formula>\n or \n<inline-formula><tex-math>$Z$</tex-math></inline-formula>\n) decoding for Calderbank–Steane–Shor codes and block decoding for concatenated codes.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"5 ","pages":"1-30"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10531666","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Quantum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10531666/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Trellis decoders are a general decoding technique first applied to qubit-based quantum error correction codes by Ollivier and Tillich in 2006. Here, we improve the scalability and practicality of their theory, show that it has strong structure, extend the results using classical coding theory as a guide, and demonstrate a canonical form from which the structural properties of the decoding graph may be computed. The resulting formalism is valid for any prime-dimensional quantum system. The modified decoder works for any stabilizer code $S$ and separates into two parts: 1) a one-time offline computation that builds a compact graphical representation of the normalizer of the code, $\mathcal {S}^{\perp}$ and 2) a quick, parallel, online query of the resulting vertices using the Viterbi algorithm. We show the utility of trellis decoding by applying it to four high-density length-20 stabilizer codes for depolarizing noise and the well-studied Steane, rotated surface, and 4.8.8/6.6.6 color codes for $Z$ only noise. Numerical simulations demonstrate a 20% improvement in the code-capacity threshold for color codes with boundaries by avoiding the mapping from color codes to surface codes. We identify trellis edge number as a key metric of difficulty of decoding, allowing us to quantify the advantage of single-axis ( $X$ or $Z$ ) decoding for Calderbank–Steane–Shor codes and block decoding for concatenated codes.
Qudit 稳定器编码的 Trellis 解码及其在 Qubit 拓扑编码中的应用
Trellis 译码器是一种通用译码技术,由 Ollivier 和 Tillich 于 2006 年首次应用于基于量子比特的量子纠错码。在这里,我们改进了他们理论的可扩展性和实用性,证明了它具有很强的结构性,以经典编码理论为指导扩展了结果,并展示了一种可以计算解码图结构特性的典型形式。由此得出的形式主义适用于任何质维量子系统。修改后的解码器适用于任何稳定器代码$S$,并分为两部分:1)一次性离线计算,建立代码归一化的紧凑图形表示,$\mathcal {S}^{\perp}$ ;2)使用维特比算法对所产生的顶点进行快速、并行、在线查询。我们将其应用于四种针对去极化噪声的高密度长度-20 稳定器编码,以及针对仅有 $Z$ 的噪声的经过充分研究的 Steane、旋转表面和 4.8.8/6.6.6 颜色编码,从而展示了栅格解码的实用性。数值模拟表明,通过避免从颜色编码到表面编码的映射,有边界颜色编码的编码容量阈值提高了 20%。我们确定树状结构边数是衡量解码难度的关键指标,从而可以量化 Calderbank-Steane-Shor 代码的单轴($X$ 或 $Z$)解码和串联代码的块解码的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信