Candidate-Heuristic In-Context Learning: A new framework for enhancing medical visual question answering with LLMs

IF 7.4 1区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Xiao Liang , Di Wang , Haodi Zhong , Quan Wang , Ronghan Li , Rui Jia , Bo Wan
{"title":"Candidate-Heuristic In-Context Learning: A new framework for enhancing medical visual question answering with LLMs","authors":"Xiao Liang ,&nbsp;Di Wang ,&nbsp;Haodi Zhong ,&nbsp;Quan Wang ,&nbsp;Ronghan Li ,&nbsp;Rui Jia ,&nbsp;Bo Wan","doi":"10.1016/j.ipm.2024.103805","DOIUrl":null,"url":null,"abstract":"<div><p>Medical Visual Question Answering (MedVQA) is designed to answer natural language questions related to medical images. Existing methods largely adopting the cross-modal pre-training and fine-tuning paradigm, face limitations in accuracy due to data scarcity and insufficient incorporation of extensive medical knowledge. Drawing inspiration from the Knowledge-Based Visual Question Answering (KB-VQA) domain, which leverages Large Language Models (LLMs) and external knowledge bases, we introduce the <strong>C</strong>andidate-<strong>H</strong>euristic <strong>I</strong>n-<strong>C</strong>ontext <strong>L</strong>earning (CH-ICL) framework, a novel approach that leverages LLMs augmented with external knowledge to directly enhance existing MedVQA models. Specifically, we collect a pathology terminology dictionary from a public digital pathology library as an external knowledge base and use it to train a knowledge scope discriminator, which helps identify the knowledge scope required to answer a question. Then, we employ existing MedVQA models to provide reliable answer candidates along with their confidence scores. Finally, the knowledge scope and candidates, combined with retrieved in-context exemplars, are aggregated into prompts for heuristically guiding LLMs in answer generation. Experimental results on the PathVQA, VQA-RAD, and SLAKE public benchmarks show state-of-the-art performance, with improvements of 1.91%, 1.88%, and 2.17% respectively over the baseline. Code and dataset are available at <span>https://github.com/ecoxial2007/CH-ICL</span><svg><path></path></svg>.</p></div>","PeriodicalId":50365,"journal":{"name":"Information Processing & Management","volume":null,"pages":null},"PeriodicalIF":7.4000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing & Management","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030645732400164X","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Medical Visual Question Answering (MedVQA) is designed to answer natural language questions related to medical images. Existing methods largely adopting the cross-modal pre-training and fine-tuning paradigm, face limitations in accuracy due to data scarcity and insufficient incorporation of extensive medical knowledge. Drawing inspiration from the Knowledge-Based Visual Question Answering (KB-VQA) domain, which leverages Large Language Models (LLMs) and external knowledge bases, we introduce the Candidate-Heuristic In-Context Learning (CH-ICL) framework, a novel approach that leverages LLMs augmented with external knowledge to directly enhance existing MedVQA models. Specifically, we collect a pathology terminology dictionary from a public digital pathology library as an external knowledge base and use it to train a knowledge scope discriminator, which helps identify the knowledge scope required to answer a question. Then, we employ existing MedVQA models to provide reliable answer candidates along with their confidence scores. Finally, the knowledge scope and candidates, combined with retrieved in-context exemplars, are aggregated into prompts for heuristically guiding LLMs in answer generation. Experimental results on the PathVQA, VQA-RAD, and SLAKE public benchmarks show state-of-the-art performance, with improvements of 1.91%, 1.88%, and 2.17% respectively over the baseline. Code and dataset are available at https://github.com/ecoxial2007/CH-ICL.

候选探究式上下文学习(Candidate-Heuristic In-Context Learning):利用 LLM 增强医学视觉问题解答的新框架
医学视觉问题解答(MedVQA)旨在回答与医学图像相关的自然语言问题。现有的方法主要采用跨模态预训练和微调范式,但由于数据稀缺和未充分纳入广泛的医学知识,其准确性受到限制。基于知识的视觉问题解答(KB-VQA)领域利用了大型语言模型(LLM)和外部知识库,我们从这一领域中汲取灵感,引入了候选逻辑情境学习(CH-ICL)框架,这是一种利用外部知识增强的 LLM 直接增强现有 MedVQA 模型的新方法。具体来说,我们从公共数字病理学图书馆收集病理学术语字典作为外部知识库,并用它来训练知识范围判别器,帮助识别回答问题所需的知识范围。然后,我们利用现有的 MedVQA 模型提供可靠的候选答案及其置信度分数。最后,将知识范围和候选答案与检索到的上下文示例相结合,汇总成提示信息,启发式地指导 LLM 生成答案。在 PathVQA、VQA-RAD 和 SLAKE 公共基准上的实验结果显示了最先进的性能,与基准相比分别提高了 1.91%、1.88% 和 2.17%。代码和数据集见 https://github.com/ecoxial2007/CH-ICL。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information Processing & Management
Information Processing & Management 工程技术-计算机:信息系统
CiteScore
17.00
自引率
11.60%
发文量
276
审稿时长
39 days
期刊介绍: Information Processing and Management is dedicated to publishing cutting-edge original research at the convergence of computing and information science. Our scope encompasses theory, methods, and applications across various domains, including advertising, business, health, information science, information technology marketing, and social computing. We aim to cater to the interests of both primary researchers and practitioners by offering an effective platform for the timely dissemination of advanced and topical issues in this interdisciplinary field. The journal places particular emphasis on original research articles, research survey articles, research method articles, and articles addressing critical applications of research. Join us in advancing knowledge and innovation at the intersection of computing and information science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信